Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171428, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438045

RESUMO

Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 µm and sea surface plankton tows with a net mesh size of 200 µm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 µm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 µm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Plâncton , Celulose
2.
Sci Total Environ ; 896: 166223, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37586531

RESUMO

Marine debris pollution poses a significant global threat to biodiversity, with plastics being the primary debris type found in oceans due to their low-cost production and high demand worldwide. Microplastics (MPs, <5 mm in size) are highly bioavailable to a wide range of marine taxa, including marine mammals, through direct and indirect ingestion routes (i.e., trophic transfer). Recently, MP pollution has been detected on the Galapagos Marine Reserve, so in this study we developed a baseline framework for MP pollution in the Galapagos sea lion (GSL, Zalophus wollebaeki) through scat-based analysis. We collected 180 GSL scat samples from the southeast region following strict quality assurance/quality control protocols to detect, quantify and characterize physical-chemical properties of MPs through visual observations and µFT-IR spectroscopy. We recovered 81 MPs of varying sizes and colors in 37 % of samples (n = 66/180), consisting mostly of fibers (69 %, x¯ = 0.31 ± 0.57 particles scat-1). The number of particles per gram of sample wet weight ranged from 0.02 to 0.22 (x¯ = 0.04 ± 0.05 particles scat wet g-1). El Malecón and Punta Pitt rookeries at San Cristobal Island had the highest number of MPs (x¯ = 0.67 ± 0.51 and 0.43 ± 0.41 particles scat-1, respectively), and blue-colored particles were the most common in all samples. We identified eleven polymers in 46 particles, consisting mostly of polypropylene-polyethylene copolymer, polypropylene, cellulose, polyethylene, and polyvinyl chloride. The textile, fishing, and packaging industries are likely significant sources of microfibers into this insular ecosystem. Our results suggest that the GSL is exposed to MPs due to anthropogenic contamination that is subsequently transferred through trophic processes. These findings provide an important baseline framework and insights for future research on MP pollution in the region, as well as for management actions that will contribute to the long-term conservation of the GSL.


Assuntos
Leões-Marinhos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Polipropilenos/análise , Polímeros , Polietilenos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Pollut ; 311: 120011, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998775

RESUMO

Monitoring beach plastic contamination across space and time is necessary for understanding its sources and ecological effects, and for guiding mitigation. This is logistically and financially challenging, especially for microplastics. Citizen science represents an option for sampling accessible sites to support long term monitoring, but challenges persist around data validation. Here we test a simple citizen science methodology to monitor visible microplastic contamination on sandy beaches using a standard quadrat unit (50 cm × 50 cm x 5 cm depth) sieved to 1 mm, to support the analysis of microplastic on two islands within the marine protected area of the Galápagos Archipelago, Ecuador (San Cristóbal and Santa Cruz islands). High school and university students undertook supervised sampling of two beaches in 2019-2020 collecting over 7000 particles. A sub-sample of the suspected microplastics collected (n = 2,213, ∼30% total) were analysed using FTIR spectrometry, confirming 93% of particles >1 mm visually identified by students were microplastics or rubber, validating this method as a crowd-sourced indicator for microplastic contamination. These data provide important insights into the plastic contamination of Galápagos, revealing plastic abundances of 0-2524 particles m-2 over the two beaches (the highest reported in Galápagos). Strong accumulation gradients were measured parallel to the waterline at Punta Pitt (San Cristobal island) and perpendicular to the waterline at Tortuga Bay (Santa Cruz island), where four-fold higher concentrations were recorded at the sea turtle nesting habitat on the back-beach dune. No significant seasonal trends were measured during one year. These results demonstrate the value of citizen science in filling spatiotemporal knowledge gaps of beach contamination to support intervention design and conservation.


Assuntos
Ciência do Cidadão , Poluentes Químicos da Água , Praias , Equador , Monitoramento Ambiental/métodos , Humanos , Microplásticos , Plásticos/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 789: 147704, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049146

RESUMO

Ecuador's Galapagos Islands and their unique biodiversity are a global conservation priority. We explored the presence, composition and environmental drivers of plastic contamination across the marine ecosystem at an island scale, investigated uptake in marine invertebrates and designed a systematic priority scoring analysis to identify the most vulnerable vertebrate species. Beach contamination varied by site (macroplastic 0-0.66 items·m-2, microplastics 0-448.8 particles·m-2 or 0-74.6 particles·kg-1), with high plastic accumulation on east-facing beaches that are influenced by the Humboldt Current. Local littering and waste management leakages accounted for just 2% of macroplastic. Microplastics (including anthropogenic cellulosics) were ubiquitous but in low concentrations in benthic sediments (6.7-86.7 particles·kg-1) and surface seawater (0.04-0.89 particles·m-3), with elevated concentrations in the harbour suggesting some local input. Microplastics were present in all seven marine invertebrate species examined, found in 52% of individuals (n = 123) confirming uptake of microplastics in the Galapagos marine food web. Priority scoring analysis combining species distribution information, IUCN Red List conservation status and literature evidence of harm from entanglement and ingestion of plastics in similar species identified 27 marine vertebrates in need of urgent, targeted monitoring and mitigation including pinnipeds, seabirds, turtles and sharks.


Assuntos
Plásticos , Poluentes Químicos da Água , Ecossistema , Equador , Monitoramento Ambiental , Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA