Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049892

RESUMO

The objective of this study was to synthesize a novel choline hydroxide ionic liquid-based tooth bleaching gel. Ionic liquid-based gels were synthesized and characterized using FTIR along with pH testing. Tooth sample preparation was carried out in line with ISO 28399:2020. The effects of synthesized gels on tooth samples were tested. Tooth samples were stained and grouped into three experimental groups: EAI (22% choline hydroxide gel), EAII (44% choline hydroxide gel), and EB (choline citrate gel) and two control groups: CA (commercial at-home 16% carbamide peroxide gel) and CB (deionized water). The tooth color analysis, which included shade matching with the Vitapan shade guide (n = 2), and digital colorimetric analysis (n = 2) were evaluated. The surface characteristics and hardness were analyzed with 3D optical profilometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Microhardness testing (n = 3), respectively. The tooth color analysis (Vitapan shade guide) revealed that all the tooth samples treated with synthesized choline citrate gel (EB) showed an A1 shade as compared to the other four groups, giving a range of shades. An analysis of the ΔE values from digital colorimetry; EAI, EAII, CA, and CB showed ΔE values in a range that was clinically perceptible at a glance. However, EB showed the highest value of ΔE. The mean microhardness values for the five groups showed that the effects of three experimental gels i.e., 44% choline hydroxide, 22% choline hydroxide, and choline citrate, on the microhardness of the tooth samples were similar to that of the positive control, which comprised commercial at-home 16% carbamide peroxide gel. SEM with EDX of three tested subgroups was closely related in surface profile, elemental composition, and Ca/P ratio. The roughness average values from optical profilometry of four tested subgroups lie within approximately a similar range, showing a statistically insignificant difference (p > 0.05) between the tested subgroups. The synthesized novel experimental tooth bleaching gels displayed similar tooth bleaching actions without any deleterious effects on the surface characteristics and microhardness of the treated tooth samples when compared with the commercial at-home tooth bleaching gel.


Assuntos
Líquidos Iônicos , Clareamento Dental , Clareamento Dental/métodos , Peróxido de Carbamida , Peróxidos/química , Ureia/química , Análise Custo-Benefício , Géis , Peróxido de Hidrogênio/química
2.
J Mater Sci Mater Med ; 33(2): 17, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072817

RESUMO

Acrylic resins-based artificial teeth are frequently used for the fabrication of dentures has and contribute a very strong share in the global market. However, the scientific literature reporting the comparative analysis data of various artificial teeth is scarce. Focusing on that, the present study investigated various types of commercially available artificial teeth, composed of polymethyl methacrylate (PMMA). Artificial teeth are characterized for chemical analysis, morphological features, thermal analysis, and mechanical properties (surface hardness, compressive strength). Different types of artificial teeth showed distinct mechanical (compression strength, Vickers hardness) and thermal properties (thermal gravimetric analysis) which may be attributed to the difference in the content of PMMA and type and quantity of different fillers in their composition. Thermogravimetric analysis (TGA) results exhibited that vinyl end groups of PMMA degraded above 200 °C, whereas 340-400 °C maximum degradation temperature was measured by differential thermal analysis (DTA) for all samples. Crisma brand showed the highest compressive strength and young modulus (88.6 MPa and 1654 MPa) while the lowest value of Vickers hardness was demonstrated by Pigeon and Vital brands. Scanning electron microscope (SEM) photographs showed that Crisma, Pigeon, and Vital exhibited characteristics of a brittle fracture; however, Artis and Well bite brands contained elongated voids on their surfaces. According to the mechanical analysis and SEM data, Well bite teeth showed a significantly higher mechanical strength compared to other groups. However, no considerable difference was observed in Vickers hardness of all groups. Graphical abstract.


Assuntos
Acrilatos/química , Materiais Dentários , Dentaduras , Dente Artificial , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Água
3.
Artif Organs ; 45(8): E265-E279, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33559192

RESUMO

Carbonate apatite/hydroxyapatite (CO3Ap/HAP) additive was obtained by calcination of wasted chicken bones at 900°C. Intermolecular attraction exists between CO3Ap/HAP additive and blended polysulfone (PSF) polymer. Electron dispersive X-ray (EDX) and FTIR analysis were carried out to check the elemental composition and bonding chemistry of prepared additive. The instantaneous demixing process generated consistent finger-like networks in CO3Ap/HAP/PSF-based composite membranes while sponge-like structure was shown by PSF as revealed by SEM images. The increase in weight % of additive loading is also confirmed by EDX analysis. Furthermore, the interaction mechanism of CO3Ap/HAP additive with polysulfone medium was analyzed by FTIR exploration. The water absorption experiment defined a 93% expansion in hydrophilic performance. Change in porosity occurs with additive loading and pure water permeation flux improved up to 11 times. Approximately, antifouling results revealed that 87% of water flux was recovered after treating with a protein solution, whereas a 30% improvement in antifouling capability in case of bovine serum albumin solution occurred. In vitro cytotoxicity, and clotting times study was carried out to evaluate virulent behavior and anticoagulation activity of formulated membranes.


Assuntos
Materiais Biocompatíveis/síntese química , Membranas Artificiais , Diálise Renal/instrumentação , Animais , Apatitas/química , Galinhas , Durapatita/química , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Estrutura Molecular , Polímeros/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfonas/química
4.
Artif Organs ; 45(11): 1377-1390, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34152645

RESUMO

In the current study, a phase inversion scheme was employed to fabricate hydroxyapatite (HA)/polysulfone (PSF)-based asymmetric membranes using a film applicator with water as a solvent and nonsolvent exchanging medium. Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) spectroscopic studies were conducted to confirm the bonding chemistry and purity of filler. The inherent thick nature of PSF generated sponge-like shape while the instantaneous demixing process produced finger-like pore networks in HA/PSF-based asymmetric membranes as exhibited by scanning electron microscope (SEM) micrographs. The FTIR spectra confirmed noncovalent weak attractions toward the polymer surface. The leaching ratio was evaluated to observe the dispersion behavior of HA filler in membrane composition. Hydrophilicity, pore profile, pure water permeation (PWP) flux, and molecular weight cutoff (MWCO) values of all formulated membranes were also calculated. Antifouling results revealed that HA modified PSF membranes exhibited 43% less adhesion of bovine serum albumin (BSA) together with >86% recovery of flux. Membrane composition showed 74% total resistance, out of which 60% was reversible resistance. Biocompatibility evaluation revealed that the modified membranes exhibited prothrombin time (PT), and thrombin time (TT) comparable with typical blood plasma, whereas proliferation of living cells over membrane surface proved its nontoxic behavior toward biomedical application. The urea and creatinine showed effective adsorption aptitude toward HA loaded PSF membranes.


Assuntos
Durapatita/química , Membranas Artificiais , Polímeros/química , Sulfonas/química , Animais , Creatinina/química , Humanos , Teste de Materiais , Camundongos , Células NIH 3T3 , Diálise Renal/instrumentação , Ureia/química
5.
J Pak Med Assoc ; 69(5): 632-639, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31105281

RESUMO

OBJECTIVE: To compare the occurrence, distribution and management of clefts of lip and palate in local patients with the available data from India and China. METHODS: The retrospective study was conducted at the Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan, and comprised data related to a three-month period from January to March 2015 at two medical centres in Lahore. Data from Pakistani centres was analysed based on province, gender, age and clefts of lip and palate conditions and Spearman's correlation matrix. RESULTS: Of the 1574 cases, 1061(67.4%) were from Punjab, 361(23%) Khyber Pakhtunkhwa, 85(5%) Sindh and 67(4.2%) were from Azad Jammu and Kashmir. The incidence of clefts of lip and palate was higher in males than females. There was higher awareness of the need for timely management in new borns with clefts of lip and palate. Some patients seeking secondary treatment were also being surgically corrected. There is no national registry of children born with cleft defect, making it difficult to assess the full scale of the problem.. CONCLUSIONS: Based on available data, it is likely that there are many adults who have not been treated when younger..


Assuntos
Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Adolescente , Adulto , Enxerto de Osso Alveolar , Criança , Pré-Escolar , China/epidemiologia , Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Intervenção Médica Precoce , Feminino , Humanos , Incidência , Índia/epidemiologia , Lactente , Masculino , Paquistão/epidemiologia , Aceitação pelo Paciente de Cuidados de Saúde , Reoperação , Estudos Retrospectivos , Distribuição por Sexo , Adulto Jovem
6.
PLoS One ; 19(7): e0303808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959277

RESUMO

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Assuntos
Antibacterianos , Hidróxido de Cálcio , Carbono , Enterococcus faecalis , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Materiais Restauradores do Canal Radicular , Prata , Prata/química , Prata/farmacologia , Hidróxido de Cálcio/química , Hidróxido de Cálcio/farmacologia , Animais , Camundongos , Nanopartículas Metálicas/química , Materiais Restauradores do Canal Radicular/química , Materiais Restauradores do Canal Radicular/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Células NIH 3T3 , Antibacterianos/farmacologia , Antibacterianos/química , Carbono/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Mater Chem B ; 11(20): 4416-4427, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36753187

RESUMO

Bioactive glasses (BGs) are inorganic biomaterials which possess favourable properties for bone repair and regeneration. The biological properties of the BGs depend on their physical features. This manuscript describes a simple methodology for rapid synthesis of BG nanoparticles (NPs) with tailored physical properties using ultrasonic disruption produced by an ultrasonic probe. The ultrasonic probe generates stable and transient cavitation which increases the mass transfer and accelerates the chemical reaction. This approach is relatively green as it evades the use of the drastic acidic conditions required for hydrolysis. The prepared BG NPs were characterized by Fourier transform infra-red (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), particle size analysis (PSA), nitrogen adsorption/desorption and BET surface area analysis, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), and in situ high temperature synchrotron XRD. The effects of ultrasonic irradiation time, and amplitude on the surface properties were investigated and the results confirmed that both parameters, especially amplitude, have significant effects on the physical properties of the prepared BG NPs. The XPS results showed that both, amplitude and time have a pronounced effect on the bridging and non-bridging oxygen atoms bonded to the Si centre in the BG samples, which play an important role in the bioactivity of the BG NPs. The in situ high temperature XRD patterns indicated a gradual phase transformation for the BG samples synthesized at different ultrasonic irradiation times and amplitudes. The TEM images showed that uniform nano-sized BG particles were obtained at 50% amplitude in only 10 minutes. A bimodal particle size distribution was observed with an increasing reaction time, up to 30 minutes, due to an increase in the formation of vortices at the interface where nucleation starts. All the prepared samples exhibited a glassy structure with the composition 70SiO2 : 25CaO : 5P2O5 and were highly bioactive. The proposed method would give a quick route for the synthesis of bioactive glasses and other ceramics with controlled physical properties.


Assuntos
Nanopartículas , Sonicação , Materiais Biocompatíveis/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Temperatura Alta
8.
Biomater Investig Dent ; 10(1): 2271972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38204475

RESUMO

The occlusal surface of a tooth is affected by the development of biofilm in pits and fissures as bacteria and food particles accumulate in its complex structure. In this study, miswak fibers containing cellulose and antimicrobial extract were incorporated in commercial pit and fissure sealants. The miswak powder was characterized by different analytical techniques. The powder was mixed in different ratios (0-5%) into a pit and fissure sealant to result in five sealants (Groups 0-5), and their mechanical properties i.e. flexural strength, compressive strength, and Vickers hardness were evaluated. The sealants were also evaluated against streptococcus mutans oral pathogenic bacteria. SEM analysis confirmed irregular shape and micron-size particles of miswak powder. The infrared spectral analysis and X-ray differential peaks showed characteristic peaks related to miswak fibers. The particle appearance increased in prepared pits and fissure sealants with higher loading of miswak powder in SEM analysis. The flexural strength, compressive strength, and Vickers hardness values were obtained in the range of 148-221 (±16.6: p-value < 0.001) MPa, 43.1-50.3 MPa (±1.7: p-value <0.001), and 15.2-21.26 VHN (±0.56: p-value <0.001) for control and prepared sealant specimens respectively. In the antibacterial study, the zone of inhibitions increased with increased content of miswak from 15.6 ± 0.45 mm (Group 1) to 20.3 ± 0.32 mm (Group 5). The MIC was calculated to be 0.039%. The prepared experimental sealant had acceptable mechanical and good antibacterial properties therefore it could be recommended as an efficient pit and fissure sealant.

9.
ACS Appl Bio Mater ; 6(2): 425-435, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36700919

RESUMO

This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.


Assuntos
Nanopartículas , Óxido de Zinco , Resinas Compostas/química , Lignina , Cimentos de Resina/química , Teste de Materiais , Cimentos de Ionômeros de Vidro/química , Zinco
10.
ACS Omega ; 8(30): 27300-27311, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546657

RESUMO

This study aims to evaluate the effect of ionic liquids and their structure on the mechanical (tensile bond strength (TBS) and Shore A hardness), mass change, and antifungal properties of soft denture lining material. Butyl pyridinium chloride (BPCL) and octyl pyridinium chloride (OPCL) were synthesized, characterized, and mixed in concentrations ranging from 0.65-10% w/w with a soft denture liner (Molloplast-B) and were divided into seven groups (C, BPCL1-3, and OPCL1-3). The TBS of bar-shaped specimens was calculated on a Universal Testing Machine. For Shore A hardness, disc-shaped specimens were analyzed using a durometer. The mass change (%) of specimens was calculated by the weight loss method. The antifungal potential of ionic liquids and test specimens was measured using agar well and disc diffusion methods (p ≤ 0.05). The alamarBlue assay was performed to assess the biocompatibility of the samples. The mean TBS values of Molloplast-B samples were significantly lower (p ≤ 0.05) for all groups except for OPCL1. Compared with the control, the mean shore A hardness values were significantly higher (p ≤ 0.05) for samples in groups BPCL 2 and 3. After 6 weeks, the OPCL samples showed a significantly lower (p ≤ 0.05) mass change as compared to the control. Agar well diffusion methods demonstrated a maximum zone of inhibition for 2.5% OPCL (20.5 ± 0.05 mm) after 24 h. Disc diffusion methods showed no zones of inhibition. The biocompatibility of the ionic liquid-modified sample was comparable to that of the control. The addition of ionic liquids in Molloplast-B improved the liner's surface texture, increased its hardness, and decreased its % mass change and tensile strength. Ionic liquids exhibited potent antifungal activity.

11.
PLoS One ; 17(9): e0275515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174089

RESUMO

INTRODUCTION: Maxillofacial trauma can be limited to superficial lacerations, abrasions, and facial bone fractures. The objective of this study was to determine the etiology, pattern, and predictors of soft tissue and bony injuries. MATERIALS AND METHODS: This study was conducted in the department of maxillofacial surgery Lady Reading hospital Pakistan from Jan 2019 to June 2021. The nonprobability consecutive sampling technique was used for the selection of patients. All patients were assessed clinically and radiologically. The neurosensory examination was done for any altered sensation, anesthesia, or paresthesia. Motor nerve function was also assessed clinically. Data were analyzed using SPSS version 26. The etiology and pattern of maxillofacial trauma were stratified among age and genders using the chi-square test to see effect modifiers. Tests for regression analysis were also applied. P≤0.05 was considered significant. RESULTS: A total of 253 patients meeting inclusion criteria were included in this study. The majority of these patients were males, 223 (88.1%), while only 30 (11.9%) were females. The mean age for the group was 25.4 ± 12.6 years. RTAs were the most common causes of trauma (63.6%) followed by assault (15.0%), falls (11.5%), FAIs (5.9%), and sports (0.4%). The most vulnerable skeletal part was the mandible (22.9%) followed by Zygoma (7.1%), significantly predicted by RTAs. Soft tissue laceration analysis showed a high frequency of multiple lacerations (38%) significantly predicted by FAIs. The frequency of trigeminal nerve injury was 5.5% (14 patients) and that of the facial nerve was 1.6% (4 patients). The strongest association of nerve injury was with firearm injury (47%), followed by road traffic accidents and sports injuries. CONCLUSION: Road traffic accident was the most common etiological factor and mandible fracture was commonly predicted by RTA. Trigeminal nerve injuries were common, frequency of nerve injuries was highly associated with mandible fracture and was predicted by FAI.


Assuntos
Armas de Fogo , Lacerações , Fraturas Mandibulares , Traumatismos Maxilofaciais , Traumatismos do Nervo Trigêmeo , Ferimentos por Arma de Fogo , Adolescente , Adulto , Causalidade , Criança , Feminino , Humanos , Masculino , Traumatismos Maxilofaciais/epidemiologia , Traumatismos Maxilofaciais/etiologia , Traumatismos do Nervo Trigêmeo/epidemiologia , Traumatismos do Nervo Trigêmeo/etiologia , Adulto Jovem
12.
Int J Artif Organs ; 45(1): 14-26, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33706595

RESUMO

In the current study, dahllite/hydroxyapatite/collagen filler extracted via calcination of wasted chicken bone was blended with PSf polymer to obtain highly biocompatible, and antifoulant hemodialysis membranes. FTIR and Raman spectroscopic analysis was done to obtain information about the bonding chemistry of the obtained filler. The intermolecular interaction that existed between dahllite/hydroxyapatite/collagen filler and pristine PSf was confirmed by Raman spectroscopic study. The PSf polymer exhibited a sponge-like structure owing to its high thickness and slow exchange with non-solvent in coagulation bath whilst the instantaneous de-mixing course produced finger-like capillaries in dahllite/hydroxyapatite/collagen filler based PSf membranes as exposed by SEM photographs. The presence of different wt. % of filler composition in the PSf matrix improved the mechanical strength as revealed by fatigue analysis. The hydrophilic character improved by 78% while leaching consistency adjusted to 0%-4%. Pure water permeation (PWP) flux improved by nine times. The pore profile improved with the addition of filler as revealed by hydrophilicity experiment, PWP flux, and SEM micrographs. Fouling evaluation results disclosed that filler based membranes showed 36% less adsorption of protein (BSA) solution together with more than 84% flux recovery ratio. The biocompatibility valuation analysis unveiled that membranes composed of filler showed extended prothrombin and thrombin coagulation times, reduced activation of fibrinogen mass, and less adhesion of plasma proteins in comparison with pristine PSf membrane. The adsorption capacity of fabricated membranes for urea and creatinine improved by 31% (in the case of urea) and 34% (in the case of creatinine) in contrast with pristine PSf membrane. The overall results showed that the M-3 membrane was optimized in terms of surface properties, protein adhesion, anticoagulation activity, and adsorption amount of urea and creatinine.


Assuntos
Materiais Biocompatíveis , Osso e Ossos/química , Durapatita , Animais , Apatitas , Galinhas , Colágeno , Membranas Artificiais , Polímeros , Diálise Renal , Sulfonas
13.
Chemosphere ; 307(Pt 2): 135626, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35863415

RESUMO

The focus of this study is to enhance the protein fouling resistance, hydrophilicity, biocompatibility, hemocompatibility and ability of the membranes and to reduce health complications like chronic pulmonary disease, peripheral vascular disease, cerebrovascular disease, and cardiovascular disease after dialysis, which are the great challenges in HD applications. In the current study, the PSF-based dialysis membranes are studied broadly. Significant consideration has also been provided to membrane characteristics (e.g., flowrate coefficient, solute clearance characteristic) and also on commercially available polysulfone HD membranes. PSF has gained a significant share in the development of HD membranes, and continuous improvements are being made in the process to make high flux PSF-based dialysis membranes with enhanced biocompatibility and improved protein resistance ability as the major issue in the development of membranes for HD application is biocompatibility. There has been a great increase in the demand for novel biocompatible membranes that offer the best performances during HD therapy, for example, low oxidative stress and low change ability of blood pressure.


Assuntos
Membranas Artificiais , Diálise Renal , Materiais Biocompatíveis , Interações Hidrofóbicas e Hidrofílicas
14.
Chemosphere ; 303(Pt 2): 135073, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35644232

RESUMO

Mixed matrix membranes (MMMs) are synthesized for efficient CO2 separation released from various anthropogenic sources, which are due to global environmental concerns. The synergetic effect of porous nitrogen-rich, CO2-philic filler and polymer in mixed matrix-based membranes (MMMs) can separate CO2 competent. The development of various loadings of porphyrin poly(N-isopropyl Acryl Amide) (P-NIPAM)as functionalized organic fillers (5-20%) in polysulfone (PSU) through solution casting is carried out followed by the various characterizations including field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), Fourier Transform Infrared Spectrometer(FT-IR) analysis and pure and mixed gas permeations ranging from 2 to 10 bar feed pressure. Due to both organic species interactions in the matrix, well-distributed fillers and homogenous surfaces, and cross-sectional structures were observed due to π-π interactions and Lewis's basic functionalities. The strong affinity of porous nitrogen-rich and CO2-philic fillers through gas permeation analysis showed high CO2/CH4 and CO2/N2 gas performance that surpassed Robeson's upper bound limit. Comparatively, MMMs showed improved CO2/CH4 permeabilities from 87.5 ± 0.5 Barrer to 88.2 ± 0.9 Barrer than pure polymer matrix. For CO2/N2, CO2 permeabilities improved to 75 ± 0.8 Barrer than pure polymer matrix. For both gas pairs (CO2/CH4, CO2/N2), respective pureselectivities (84%; 86%) and binary selectivities (85% and 85%)were improved. Various theoretical gas permeation models were used to predict CO2 permeabilities for MMMs from which the modified Maxwell-Wagner-Sillar model showed the least AARE% of 0.87. The results showed promising results for efficient CO2 separation due to exceptional functionalized P-PNIPAM affinitive properties. Finally, cost analysis reflected the inflated cost of membranes production for industrial setup using indigenous resources.


Assuntos
Dióxido de Carbono , Recuperação e Remediação Ambiental , Estudos Transversais , Excipientes , Nitrogênio , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Chem Biol Drug Des ; 98(6): 1007-1024, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581497

RESUMO

Chronic periodontal is a very common infection that instigates the destruction of oral tissue, and for its treatment, it is necessary to minimize the infection and the defects regeneration. Periodontium consists of four types of tissues: (a) cementum, (b) periodontal ligament, (c) gingiva, and 4) alveolar bone. In separated cavities, regenerative process also allows various cell proliferations. Guided tissue regeneration (GTR) is a potential procedure that favors periodontal regrowth; however, some limitations (such as ineffective hemostatic property, poor mechanical property, and improper biodegradation) are also associated with it. This review mainly emphasizes on the following areas: (a) a summarized overview of the periodontium and its immunological situations, (b) recently utilized treatments for regeneration of distinctive periodontal tissues; (c) an overview of GTR membranes available commercially, and the latest developments on the characterization and processing of GTR membrane material; and 4) the function of the different non-polymeric/polymeric materials, which are acting as drug carriers, antibacterial agents, nanoparticles, and periodontal barrier membranes to prevent periodontal inflammation and to improve the strength of the GTR membrane.


Assuntos
Materiais Biocompatíveis , Regeneração Tecidual Guiada Periodontal/instrumentação , Membranas Artificiais , Nanopartículas Metálicas/química , Periodonto/imunologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fosfatos de Cálcio/química , Portadores de Fármacos/química , Regeneração Tecidual Guiada Periodontal/métodos , Humanos , Prata/química
16.
Int J Biol Macromol ; 164: 1847-1857, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791269

RESUMO

Basil seeds are widely cultivated throughout the world because of their extensive applications in various fields of life. The Basil seeds mucilage (BSM) exhibits remarkable physical and chemical properties like high water absorbing capacity, emulsifying, and stabilizing properties. The extraction of this mucilage from the seed surface has always been done by physical and chemical methods, which has certain drawbacks. Here, we report for the first time a chemical method for the effective extraction of this mucilage using ionic liquids (ILs); the green solvents. Pyridinium chloride based ILs were investigated for the effective extraction of mucilage and the process was optimized for various variables i.e. time, temperature, basil seed loading, co-solvents, anti-solvents. The extraction yield (up to 25% w/w of mucilage per basil seeds dry weight) was obtained at optimum conditions. Extracted mucilage was characterized by analytical techniques. The extracted BSM was used to prepare AuNps/BSM nanocomposite by stabilizing the gold nanoparticles. The AuNps/BSM nanocomposite was applied for the catalytic degradation of dyes (congo red; 12 min, methyl orange; 4 min, whereas 4-nitrophenol; 6 min).


Assuntos
Nanocompostos/química , Ocimum basilicum/química , Mucilagem Vegetal/isolamento & purificação , Catálise , Corantes , Emulsões/química , Ouro , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Mucilagem Vegetal/metabolismo , Polissacarídeos/análise , Sementes/química , Temperatura , Água/química
17.
Int J Biol Macromol ; 149: 1059-1071, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32027903

RESUMO

Cellulose/clay composites were prepared and applied for the adsorption of Drimarine Yellow HF-3GL direct dye. The prepared composites were characterized by FTIR, TGA, EDX, SEM and XRD techniques. Bagasse was used as a cellulose source, while clay was obtained from local source, which was modified chemically before composite preparation. Adsorption efficiencies were compared of composite I and II as a function of contact time, temperature, pH, initial dye concentration and composite dose. Non-linear kinetic and equilibrium isotherm employed and dye adsorption data fitted well to pseudo-second order kinetics model. Among isotherms, the Redlich-Peterson isotherm well defined the sorption process of dye on to composites. Thermodynamic factors (ΔS°, ΔH° and ΔG°) revealed that the sorption process was spontaneous, exothermic and feasible. Cellulose/clay composite I and II removed 88.64% and 89.95% dye with 60 min at pH 2 and 30 °C, respectively. For reusability, desorption was performed using different eluting agents and NaOH showed higher desorption efficiency. For the treatment of wastewater, the developed composites were applied to textile effluents and color removal of (90-96.07%) and (97-98.23%) was achieved using cellulose/clay composite I and II, respectively. The results showed that cellulose/clay composite are efficient for the removal dyes and could possibly be used for the treatment of textile effluents.


Assuntos
Celulose/química , Argila/química , Corantes/isolamento & purificação , Compostos Inorgânicos/química , Nanocompostos/química , Compostos Orgânicos/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Dinâmica não Linear , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Têxteis , Termogravimetria , Fatores de Tempo , Águas Residuárias/química
18.
Mater Sci Eng C Mater Biol Appl ; 106: 110167, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753414

RESUMO

New inventions and innovations in the field of dentistry have potential applications to satisfy the patient's demand. In prosthodontics, a dental prosthesis plays a major role in improving the quality of oral health care. Currently, the trends have shifted towards the implants and implant-supported prosthesis for the replacement of missing teeth. Conventional dentures are patient's preference mainly due to financial constraints. In an attempt to find solutions to current problems, we have come across new materials zirconium, titanium and new inventions like flexible dentures, fenestrated dentures, and CAD/CAM fabricated dentures. Using the progress of past five years in the field of prosthodontics, this comprehensive review focuses on denture base materials, denture liners, removable partial dentures, fixed prosthesis such as crown and bridge materials, implant-supported a fixed denture, artificial teeth materials, impression materials, and ingenious alternatives to conventional dentures. This article also sheds some light on the current promising researches and gives insight into the problems that can be the focus of future researches.


Assuntos
Prótese Dentária Fixada por Implante , Coroas , Materiais Dentários/química , Planejamento de Prótese Dentária , Prótese Parcial Removível , Humanos , Zircônio/química
19.
Mater Sci Eng C Mater Biol Appl ; 114: 111040, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994017

RESUMO

Secondary caries is one of the most major cause for re-placement of dental composite restorations. Targeting the survival of cariogenic bacteria residing on the restoration surface may reduce this problem. The present study aims to evaluate the antibacterial potential as well as assess the physical and chemical properties of experimental dental composites containing novel drug-decorated copper particles (DDCP) as adjunct antibacterial filler particles. These were incorporated at concentrations of 0%, 0.5%, 0.10%, 0.20%, and 0.25% (w/w) into experimental composite consisting of methacrylate monomers and silanized silica fillers. RESULTS: Direct contact test revealed that the anti-cariogenic potential of experimental composites was more than the control groups. The cell viability assay showed no toxic effect on MC3T3-E1 cell lines in the MTT assay. The microhardness of experimental composites increased as the percentage of DDCP increased, however, the degree of cure was increased only up till the concentration of 0.20%. The release kinetics of the composites reveals that even after 28 days there was a steady and slow release of copper particles signifying the sustained anti-cariogenic effect. CONCLUSION: The experimental composites have good anti-cariogenic potential, which was sustained for one month without any deleterious effect on the physical and chemical properties of resin dental composites.


Assuntos
Cobre , Preparações Farmacêuticas , Resinas Compostas , Cobre/farmacologia , Teste de Materiais , Dióxido de Silício , Propriedades de Superfície
20.
J Biomater Sci Polym Ed ; 31(14): 1806-1819, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32493173

RESUMO

The aim of this study was an in-situ synthesis of hydroxyapatite (HA) on cellulose fibers to be used as a new reinforcing agent for dental restorations. The microwave irradiation method was used for synthesis and the materials were characterized with analytical techniques. The prepared dental resin composites were mechanically tested by a universal testing machine and electrodynamic fatigue testing system. FTIR, XRD, SEM/EDS analysis confirmed the successful synthesis of HA on cellulose fibers. The Alamar blue biocompatibility assay showed more than 90% cell viability for the prepared cellulose/HA. The mechanical properties of resin composites improved with cellulose content from 30 wt.% to 50 wt.% in the polymer matrix. Substantially, increasing the cellulose/HA content from 40% to 50% improved the mechanical properties. The results suggested that HA could be successfully synthesized on cellulose fibers using microwave irradiation and contributed to improving the mechanical properties of dental resin composites.


Assuntos
Celulose , Durapatita , Resinas Compostas , Teste de Materiais , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA