Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 11(6): 6102-6113, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28605594

RESUMO

Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au3+). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.


Assuntos
Ouro/química , Nanoporos , Nanoconchas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Polímeros/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ouro/uso terapêutico , Humanos , Hipertermia Induzida/métodos , Camundongos , Nanoporos/ultraestrutura , Nanoconchas/uso terapêutico , Nanoconchas/ultraestrutura , Imagem Óptica/métodos , Oxirredução , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Polímeros/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos
2.
ACS Nano ; 11(11): 10992-11004, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29039917

RESUMO

The recently emerged exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are promising T1-weighted contrast agents for magnetic resonance imaging (MRI) due to their good biocompatibility compared with Gd-chelates. However, the best particle size of ES-MIONs for T1 imaging is still unknown because the synthesis of ES-MIONs with precise size control to clarify the relationship between the r1 (or r2/r1) and the particle size remains a challenge. In this study, we synthesized ES-MIONs with seven different sizes below 5 nm and found that 3.6 nm is the best particle size for ES-MIONs to be utilized as T1-weighted MR contrast agent. To enhance tumor targetability of theranostic nanoparticles and reduce the nonspecific uptake of nanoparticles by normal healthy cells, we constructed a drug delivery system based on the 3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy. The laser scanning confocal microscopy (LSCM) and flow cytometry analysis results demonstrate that our strategy of precise targeting via exposure or hiding of the targeting ligand RGD2 on demand is feasible. The MR imaging and chemotherapy results on the cancer cells and tumor-bearing mice reinforce that our DOX@ES-MION3@RGD2@mPEG3 nanoparticles are promising for high-resolution T1-weighted MR imaging and precise chemotherapy of tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Imagem de Difusão por Ressonância Magnética , Compostos Férricos/química , Compostos Férricos/uso terapêutico , Humanos , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Nanomedicina Teranóstica/métodos
3.
Acad Radiol ; 10(8): 854-60, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12945919

RESUMO

RATIONALE AND OBJECTIVES: Ventilation with high oxygen (O2) concentrations has been shown to decrease T1 in blood and tissues of patients. This study aims to assess the effect of hyperoxygenation on the T1 relaxation time of blood and other physiologic solutions. MATERIALS AND METHODS: Varied gaseous mixtures of O2 and air between 21% and 100% O2 were created using an experimental circuit at room temperature, and used to saturate human blood, plasma, or normal saline. The samples were studied using an 8.45-Tesla magnetic resonance (MR) system and a 1.5-Tesla clinical MR scanner. RESULTS: MR spectroscopy at 8.45 Tesla showed that the percentage of O2 chosen for saturation correlated negatively with T1 (R2 = 1.00 for blood, 0.99 for plasma, and 1.00 for normal saline). The reduction in T1 between solutions saturated with 21% and 100% O2 was 487 milliseconds (22% of the baseline T1 value) for blood, 391 milliseconds (15%) for plasma and 622 milliseconds (19%) for saline. Similarly, MR measurements at 1.5 Tesla showed T1 reduction with increasing O2 concentration. Conclusion. The decreasing T1 in blood depends strongly on the fraction of dissolved O2 in solution and is largely independent of the hemoglobin content.


Assuntos
Espectroscopia de Ressonância Magnética , Oxigênio/sangue , Saliva/química , Técnicas In Vitro , Plasma/química , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA