Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(23): 10139-10144, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666988

RESUMO

Crystalline materials are increasingly being used as platforms for encapsulating proteins to create stable, functional materials. However, the uptake efficiencies and stimuli-responsiveness of crystalline frameworks are limited by their rigidities. We have recently reported a new form of materials, polymer-integrated crystals (PIX), which combine the structural order of protein crystals with the dynamic, stimuli-responsive properties of synthetic polymers. Here we show that the crystallinity, flexibility, and chemical tunability of PIX can be exploited to encapsulate guest proteins with high loading efficiencies (up to 46% w/w). The electrostatic host-guest interactions enable reversible, pH-controlled uptake/release of guest proteins as well as the mutual stabilization of the host and the guest, thus creating a uniquely synergistic platform toward the development of functional biomaterials and the controlled delivery of biological macromolecules.


Assuntos
Materiais Biocompatíveis , Polímeros , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA