Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610380

RESUMO

Environmental monitoring and the detection of antibiotic contaminants require expensive and time-consuming techniques. To overcome these challenges, gold nanoparticle-mediated fluorometric "turn-on" detection of Polymyxin B (PMB) in an aqueous medium was undertaken. The molecular weight of polyethyleneimine (PEI)-dependent physicochemical tuning of gold nanoparticles (PEI@AuNPs) was achieved and employed for the same. The three variable molecular weights of branched polyethyleneimine (MW 750, 60, and 1.3 kDa) molecules controlled the nano-geometry of the gold nanoparticles along with enhanced stabilization at room temperature. The synthesized gold nanoparticles were characterized through various advanced techniques. The results revealed that polyethyleneimine-stabilized gold nanoparticles (PEI@AuNP-1-3) were 4.5, 7.0, and 52.5 nm in size with spherical shapes, and the zeta potential values were 29.9, 22.5, and 16.6 mV, respectively. Accordingly, the PEI@AuNPs probes demonstrated high sensitivity and selectivity, with a linear relationship curve over a concentration range of 1-6 µM for polymyxin B. The limit of detection (LOD) was calculated as 8.5 nM. This is the first unique report of gold nanoparticle nano-geometry-dependent FRET-based turn-on detection of PMB in an aqueous medium. We believe that this approach would offer a complementary strategy for the development of a highly sophisticated and advanced sensing system for PMB and act as a template for the development of new nanomaterial-based engineered sensors for rapid antibiotic detection in environmental as well as biological samples.


Assuntos
Nanopartículas Metálicas , Polimixina B , Ouro , Peso Molecular , Polietilenoimina , Transferência Ressonante de Energia de Fluorescência , Antibacterianos
2.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198596

RESUMO

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Flavonoides/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Flavonoides/química , Lasers/normas , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
3.
J Mater Sci Mater Med ; 27(12): 187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27796686

RESUMO

Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.


Assuntos
Diamante/química , Nanopartículas/química , Nanoestruturas/química , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Micro-Ondas , Poliestirenos/química , Silício/química , Análise Espectral Raman , Propriedades de Superfície
4.
ACS Appl Bio Mater ; 7(8): 5382-5396, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38992948

RESUMO

The programmed fabrication of oral dosage forms is associated with several challenges such as controlled loading and disintegration. To optimize the drug payload, excipient breakdown, and site-specific sustained release of hydrophobic drug (sulfamethoxazole, SM), we propose the development of acrylate polymer tablets enclosed with drug-loaded polycaprolactone (PCL) films. The active pharmaceutical ingredient (API) is physisorbed into the porous iron (Fe)-based metal-organic framework (MOF) and later converted to tangible PCL films, which, upon folding, are incorporated into the acrylate polymer matrices (P1/P2/P3). X-ray powder diffraction (XRPD) analysis and scanning electron microscopy (SEM) micrographs confirmed the stability and homogeneous distribution of MOF within the 50 µm thick film. Adsorption-desorption measurements at ambient temperatures confirmed the decrease in the BET surface area of PCL films by 40%, which was ∼3.01 m/g, and pore volume from 30 to 9 nm. The decrease in adsorption and surface parameters could confirm the gradual accessibility of SM molecules once exposed to a degrading environment. Fourier transform infrared (FTIR) analyses of in vitro dissolution confirmed the presence of the drug in the MOF-PCL film-enclosed tablets and concluded the cumulative SM release at pH ∼ 8.2 which followed the order SM@Fe-MOF < P1/P2/P3 < PCL-SM@Fe-MOF < P1/PCL-SM@Fe-MOF < P3/PCL-SM@Fe-MOF. The results of the study indicate that the P3/PCL-SM@Fe-MOF assembly has potential use as a biomedical drug delivery alternative carrier for effective drug loading and stimuli-responsive flexible release to attain high bioavailability.


Assuntos
Materiais Biocompatíveis , Preparações de Ação Retardada , Teste de Materiais , Estruturas Metalorgânicas , Tamanho da Partícula , Poliésteres , Estruturas Metalorgânicas/química , Poliésteres/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Propriedades de Superfície , Portadores de Fármacos/química , Polímeros/química
5.
J Long Term Eff Med Implants ; 21(2): 169-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043975

RESUMO

For many decades, bioceramic materials have been used in a variety of biomedical applications due to their biocompatibility, hardness, wear resistance and compressive strength properties. Bioceramic materials, including Bioglass, glass ceramic materials, and hydroxyapatite, have used to create total ossicular replacement prostheses and partial ossicular replacement prostheses. This review describes design factors associated with middle ear implants as well as clinical use of bioceramic materials in middle ear implants.


Assuntos
Materiais Biocompatíveis , Cerâmica , Prótese Ossicular , Durapatita , Orelha Externa/anatomia & histologia , Orelha Média/anatomia & histologia , Humanos , Substituição Ossicular
6.
J Biomed Mater Res B Appl Biomater ; 109(1): 33-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677314

RESUMO

We report on the fabrication of a microneedle-based electrochemical biosensor for use in transdermal biosensing, which includes a screen-printed electrode containing a Prussian blue-gold nanohybrid as the working electrode. The Prussian blue gold nanohybrid is made from polyethylenime (PEI)- mediated simultaneous synthesis of Prussian blue (PBNP) and gold nanoparticles (AuNP), which forms a PBNP-AuNP nanohybrid with a remarkable change in the Prussian blue character. PEI-protected polycrystalline PBNPs can be synthesized in acidic media from the single precursor potassium ferricyanide [K3 Fe(CN)6 ] at 60°C. Since PEI also enables the controlled formation of gold nanoparticles (AuNPs) in the presence of formaldehyde, nanohybrids containing PBNPs and AuNPs may be prepared. Two different methods of PEI mediated synthesis of AuNP in the presence of PBNP were considered. In Method 1, AuNP and PBNP were made independently and mixed together in an appropriate ratio. In Method 2, PBNPs were made first, followed by PEI- and formaldehyde-mediated reduction of gold cations in the presence of PBNP. PBNP-AuNPs display a remarkable change in Prussian blue behavior such that the absorption maxima of PBNP-AuNPs made through Method 1 tend to increase at 670 nm as a function of gold concentration as compared with the control; the reverse was observed when PBNP-AuNPs were made through Method 2. As made PBNPs and PBNP-AuNPs made through Method 1 display excellent catalytic activity toward both reduction and oxidation of hydrogen peroxide based on peroxidase mimetic activity. In addition, the as-synthesized PBNPs displayed superparamagnetic behavior that can be manipulated in the presence of AuNPs. The results from peroxidase mimetic activity, chemiluminescence, cyclic voltammetry, and amperometry showed suitable analytical performance of the as-made PBNP-AuNP nanohybrid for biomedical applications.


Assuntos
Ferrocianetos/química , Glucose/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Glucose Oxidase , Peróxido de Hidrogênio/química , Iminas/química , Substâncias Luminescentes/química , Luminol/química , Oxirredução , Polietilenos/química , Reprodutibilidade dos Testes , Pele , Propriedades de Superfície
7.
J Nanosci Nanotechnol ; 10(10): 6305-12, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137723

RESUMO

Microneedle devices for transdermal delivery of nanoscale pharmacologic agents were fabricated out of organically-modified ceramic (Ormocer) materials using two photon polymerization. Out-of-plane hollow microneedle arrays with various aspect ratios were fabricated using this rapid prototyping process. Human epidermal keratinocyte (HEK) viability on Ormocer surfaces fabricated using two photon polymerization was similar to that on control surfaces. Nanoindentation studies were performed to determine hardness and Young's modulus values for Ormocer materials. Microneedies were shown to enable more rapid distribution of the PEG-amine quantum dot solution to the deep epidermis and dermis layers of porcine skin than topical administration. Our results suggest that two photon polymerization may be used to create microneedle arrays for transdermal delivery of nanoscale pharmacologic agents.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Microtecnologia/métodos , Nanoestruturas/administração & dosagem , Agulhas , Administração Cutânea , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Módulo de Elasticidade , Desenho de Equipamento , Feminino , Dureza , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Teste de Materiais , Microscopia Confocal , Microscopia Eletrônica de Varredura , Polimerização , Pontos Quânticos , Pele/efeitos dos fármacos , Pele/metabolismo , Suínos
8.
J Long Term Eff Med Implants ; 20(4): 303-15, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21488823

RESUMO

The disadvantages involving the use of a patient's own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders.


Assuntos
Transplante Ósseo/métodos , Osso e Ossos/fisiologia , Proteínas Morfogenéticas Ósseas/administração & dosagem , Proteínas Morfogenéticas Ósseas/uso terapêutico , Substitutos Ósseos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Periósteo , Porosidade , Células-Tronco , Transplante Homólogo
9.
J Mech Behav Biomed Mater ; 104: 103665, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174423

RESUMO

Osteochondral (OC) defects usually involve the damage of both the cartilage and its underneath subchondral bone. In recent years, tissue engineering (TE) has become the most promising method that combines scaffolds, growth factors, and cells for the repair of OC defects. An ideal OC scaffold should have a gradient structure to match the hierarchical mechanical properties of natural OC tissue. To satisfy such requirements, 3D printing, e.g., direct ink writing (DIW), has emerged as a technology for precise and customized scaffold fabrication with optimized structures and mechanical properties. In this study, finite element simulations were applied to investigate the effects of pore geometry on the mechanical properties of 3D printed scaffolds. Scaffold specimens with different lay-down angles, filament diameters, inter-filament spacing, and layer overlaps were simulated in compressive loading conditions. The results showed that Young's moduli of scaffolds decreased linearly with increasing scaffold porosity. The orthotropic characteristics increased as the lay-down angle decreased from 90° to 15°. Moreover, gradient transitions within a wide range of strain magnitudes were achieved in a single construct by assembling layers with different lay-down angles. The results provide quantitative relationships between pore geometry and mechanical properties of lattice scaffolds, and demonstrate that the hierarchical mechanical properties of natural OC tissue can be mimicked by tuning the porosity and local lay-down angles in 3D printed scaffolds.


Assuntos
Durapatita , Alicerces Teciduais , Análise de Elementos Finitos , Tinta , Poliésteres , Porosidade , Impressão Tridimensional , Engenharia Tecidual , Redação
10.
Biointerphases ; 15(4): 041007, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736477

RESUMO

In this study, the structure, adhesion, and cell viability characteristics of silicon-incorporated diamond-like carbon (Si-DLC) coatings on fused silica substrates were investigated. The effects of argon and oxygen postprocessing plasma treatments on the Si-DLC coatings were also studied. The contact angle results showed that the Si-DLC coatings were more hydrophilic than the uncoated surfaces, and postprocessing plasma treatment increased the hydrophilicity of the Si-DLC coatings. Atomic force microscopy and profilometry confirmed that postprocessing plasma treatment increased the thickness and roughness of the Si-DLC coatings. The results of microscratch testing indicated that the plasma treatments reduced the adhesion of the coatings. The x-ray photoelectron spectroscopy (XPS) showed the presence of carbon, oxygen, and silicon in the Si-DLC coatings before and after the plasma treatments. These results show that the postprocessing plasma treatment significantly reduced the atomic percentage of the carbon in the Si-DLC coatings. XPS also confirmed the presence of carbon in the form of sp3(C-C), sp2(C=C), C-O, and C=O bonds in the Si-DLC coatings; it showed that postprocessing treatments significantly increased the percentage of oxygen in the Si-DLC coatings. Fourier transform infrared spectroscopy (FTIR) analysis showed features associated with C-OH stretching, C-H bending, as well as Si-CH2 and C-H bending in the Si-DLC coating. The XPS and FTIR results confirmed that the plasma treatment caused dissociation of the sp2 and sp3 bonds and formation of C-OH bonds. The contact angle data indicated that postprocessing treatment increased the hydrophilicity of the Si-DLC coating. Similar to the uncoated substrates, L929 cells showed no change in cell viability when cultured on Si-DLC coatings. These results of the study indicate the suitability of Si-DLC coatings as inert coatings for medical and biotechnology applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Gases em Plasma/química , Silício/química , Animais , Argônio/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Microscopia de Força Atômica , Oxigênio/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície
11.
J Biomed Nanotechnol ; 16(3): 263-282, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32493539

RESUMO

Suturing has been the gold standard approach to close wounds for many decades. However, suturing causes tissue damage, which is accompanied by foreign body reaction, entry of pathogens, complications, infection, or death. In addition, the procedure is usually time-consuming, requiring manual dexterity and free moving space. Other adhesive approaches have been proposed and demonstrated with great potential, including laser-assisted tissue closure with either photothermal or photochemical reactions, application of nanoparticles, glues, constructs based on extracellular matrix (ECM), microbarbs, bio-inspired structures, and tape. The quality of closure has been evaluated by histological methods, indexing, morphology, tensile testing, patency rate, leakage pressure, and burst pressure. All the novel tissue joining methods aim to provide an adhesive with appropriate strength, non-cytotoxicity, and minimal damage. The capability for rapid attachment and release may further reduce surgical procedure time. More research is needed to prove the feasibility of new tissue joining techniques based on the type of tissue, surface chemistry, and working environment.


Assuntos
Nanopartículas , Adesivos Teciduais , Adesivos , Matriz Extracelular , Lasers
12.
Biointerphases ; 14(2): 021007, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053032

RESUMO

Gelatin methacryloyl (GelMA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) photoinitiator are commonly used in combination to produce a photosensitive polymer but there are concerns that must be addressed: the presence of unreacted monomer is well known to be cytotoxic, and lithium salts are known to cause acute kidney injury. In this study, acellular 10% GelMA hydrogels cross-linked with different LAP concentrations and cross-linking illumination times were evaluated for their cytotoxicity, photosensitizing potential, and elastic moduli. Alamar Blue and CyQuant Direct Cell viability assays were performed on human primary renal proximal tubule epithelial cells (hRPTECs) exposed to extracts of each formulation. UV exposure during cross-linking was not found to affect extract cytotoxicity in either assay. LAP concentration did not affect extract cytotoxicity as determined by the Alamar Blue assay but reduced hRPTEC viability in the CyQuant Direct cell assay. Photocatalytic activity of formulation extracts toward NADH oxidation was used as a screening method for photosensitizing potential; longer UV exposure durations yielded extracts with less photocatalytic activity. Finally, elastic moduli determined using nanoindentation was found to plateau to approximately 20-25 kPa after exposure to 342 mJ/cm2 at 2.87 mW of UV-A exposure regardless of LAP concentration. LAP at concentrations commonly used in bioprinting (<0.5% w/w) was not found to be cytotoxic although the differences in cytotoxicity evaluation determined from the two viability assays imply cell membrane damage and should be investigated further. Complete cross-linking of all formulations decreased photocatalytic activity while maintaining predictable final elastic moduli.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gelatina/toxicidade , Hidrogéis/toxicidade , Lítio/toxicidade , Ácidos Fosfínicos/toxicidade , Poli-Hidroxietil Metacrilato/toxicidade , Alicerces Teciduais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elasticidade , Gelatina/química , Humanos , Hidrogéis/síntese química , Teste de Materiais , Poli-Hidroxietil Metacrilato/síntese química
13.
J Nanosci Nanotechnol ; 8(11): 6043-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198344

RESUMO

Nanoporous cobalt thin films were deposited on anodized aluminum oxide (AAO) membranes at room temperature using pulsed laser deposition. Scanning electron microscopy demonstrated that the nanoporous cobalt thin films retained the monodisperse pore size and high porosity of the anodized aluminum oxide substrates. Temperature- and field-dependent magnetic data obtained between 10 K and 350 K showed large hysteresis behavior in these materials. The increase of coercivity values was larger for nanoporous cobalt thin films than for multilayered cobalt/alumina thin films. The average diameter of the cobalt nanograins in the nanoporous cobalt thin films was estimated to be approsimately 5 nm for blocking temperatures near room temperature. These results suggest that pulsed laser deposition may be used to fabricate nanoporous magnetic materials with unusual properties for biosensing, drug delivery, data storage, and other technological applications.


Assuntos
Cobalto/química , Cristalização/métodos , Lasers , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Temperatura
14.
Pharmacol Ther ; 182: 33-55, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28720431

RESUMO

Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.


Assuntos
Materiais Biocompatíveis , Fenômenos Fisiológicos Celulares , Propriedades de Superfície , Topografia Médica , Humanos , Engenharia Tecidual/métodos
15.
J Nanosci Nanotechnol ; 7(4-5): 1486-93, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17450916

RESUMO

Current blood glucose sensors have proven to be inadequate for long term in vivo applications; membrane biofouling and inflammation play significant roles in sensor instability. An ideal biosensor membrane material must prevent protein adsorption and promote integration of the sensor with the surrounding tissue. Furthermore, biosensor membranes must be sufficiently thin and porous in order to allow the sensor to rapidly respond to fluctuations in analyte concentration. In this study, the use of diamondlike carbon-coated anodized aluminum oxide as a potential biosensor membrane is discussed. Diamondlike carbon films and diamondlike carbon-coated anodized aluminum oxide nanoporous membranes were examined using scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and platelet rich plasma testing. The diamondlike carbon-coated anodized aluminum oxide membranes remained free from protein adsorption during in vitro platelet rich plasma testing. We anticipate that this novel membrane could find use in immunoisolation devices, pacemakers, kidney dialysis membranes, microdialysis systems, and other devices facing biocompatibility issues that limit in vivo function.


Assuntos
Materiais Biocompatíveis/química , Carbono/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Adsorção , Óxido de Alumínio/química , Técnicas Biossensoriais , Eletroquímica/métodos , Desenho de Equipamento , Teste de Materiais , Membranas/química , Microscopia Eletrônica de Varredura , Análise Espectral Raman
16.
J Biomed Mater Res B Appl Biomater ; 105(5): 1191-1199, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059517

RESUMO

Synthesis of functional gold nanoparticles (AuNPs) justifying selectivity in biochemical interaction along with biocompatibility suited for in vivo biomedical applications has been a challenging issue. We report herein the role of polyethylenimine (PEI) in controlled synthesis of AuNPs under ambient conditions which has potentiality for sensing glutathione and selective interaction with DNA binding proteins facilitating endosomal escape for the nucleotide delivery. The choice of organic reducing agents like formaldehyde/acetaldehyde/acetyl acetone/tetrahydrofuran hydroperoxide and other similar compounds allow rapid conversion of PEI capped gold cations into AuNPs at room temperature thus controlling the functional ability of nanoparticles as a function of organic reducing agents. Both small and higher molecular weight PEI facilitates fast synthesis of AuNPs controlling cytotoxicity during in vivo biomedical applications. The AuNPs have been characterized by UV-Vis and transmission electron microscopy revealing excellent polycrystallinity and controlled nanogeometry. The cationic polymer coating enhances the electrocatalytic performances of nanoparticles. The typical biomedical application on glutathione (GSH) sensing based on peroxidase mimetic ability of as made AuNPs is studied. The as synthesized AuNPs are extreme salt and pH resistant and have potentiality for both homogeneous and heterogeneous biocatalysis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1191-1199, 2017.


Assuntos
Materiais Revestidos Biocompatíveis , Glutationa/química , Ouro/química , Nanopartículas Metálicas/química , Nucleotídeos , Polietilenoimina/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Nucleotídeos/química , Nucleotídeos/farmacocinética
17.
Biointerphases ; 12(1): 011005, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28347142

RESUMO

Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H2O2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to 800 µM and a detection limit as low as 80 µM were observed. The mesoscale pores of the as developed AuNP-inserted MSNPs were also used to entrap the hydrophobic drug paclitaxel. The results of this study indicate the potential use of the AuNP-inserted MSNPs in biocatalysis and drug delivery.


Assuntos
Biocatálise , Portadores de Fármacos/metabolismo , Ouro , Nanopartículas/metabolismo , Polietilenoimina/metabolismo , Dióxido de Silício , Portadores de Fármacos/química , Formaldeído/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Espectrometria por Raios X , Propriedades de Superfície , Temperatura
18.
J Biomed Mater Res A ; 105(12): 3273-3280, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28804994

RESUMO

Various approaches have been undertaken to enhance the delivery of therapeutic agents, including tissue-killing radionuclides, into solid tumors. Here, we describe the preparation of conical needles composed of Ti and Mo coated by pulsed laser deposition or chemical vapor deposition with elements (Ho and Re) that can readily yield radioactive isotopes following irradiation in a neutron flux. The radioactive needles, whose design were based on solid microneedle arrays used in transdermal drug delivery, can be produced with minimal handling of radioactivity and subsequently inserted into tumors as a means of internal radiation therapy. Ho and Re were specifically chosen because of their large neutron capture cross-sections as well as the desirable radiotherapeutic properties of the resultant radionuclides. Neutron-absorbing shields were also developed to prevent the production of unwanted radionuclides after neutron irradiation of the needle base materials. Neutron activation calculations showed that therapeutically significant amounts of radionuclides can be produced for treating solid tumors. Stability studies demonstrated that Re did not leach off the Mo needles. These coated neutron-activatable needles offer a new approach to internal radiation therapy of tumors that allows precise tailoring of the absorbed radiation dose delivered to the tumor by controlling the coating thickness and the irradiation time. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3273-3280, 2017.


Assuntos
Braquiterapia/instrumentação , Materiais Revestidos Biocompatíveis/química , Sistemas de Liberação de Medicamentos/instrumentação , Hólmio/química , Neoplasias/radioterapia , Rênio/química , Desenho de Equipamento , Humanos , Molibdênio/química , Agulhas , Nêutrons , Titânio/química , Adesivo Transdérmico
19.
Toxicol In Vitro ; 44: 248-255, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739488

RESUMO

Porous PMMA is a versatile biomaterial with good biocompatibility but high susceptibility to bacterial colonization, which we mitigated by utilizing immobilized antimicrobial silver nanoparticles (AgNPs). A uniform porous thin film was deposited onto silicon wafers by simultaneously ablating PMMA and silver (Ag) using pulsed laser deposition (PLD) optimized for minimal human cell toxicity and antibacterial efficacy. PMMA without Ag became heavily colonized by E. coli in simulated dynamic conditions, while Ag-containing samples prevented all colonization. ICP-MS analysis demonstrated that the amount of leached Ag after 24h under simulated in vivo conditions (with serum media at 37°C and 5% CO2) increased in proportion to film thickness (and total silver content). 10,000, 14,000, and 20,000 laser pulse-deposited films released 0.76, 1.05, and 1.67µg/mL Ag, respectively, after 24h. Human bone marrow stromal cells (hBMSCs) grown directly on 10,000-pulse films (0.76µg/mL Ag released) for 24-h exhibited no cytotoxicity. Exposure to the remaining films produced cytotoxicity, necrosis, and apoptosis detected using flow cytometry. Examining both leachates and direct cell contact allowed us to develop an in vitro cytotoxicity test method and optimize a novel device material and coating to be nontoxic and bactericidal during both potential initial implantation and external use.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Polimetil Metacrilato/administração & dosagem , Prata/administração & dosagem , Antibacterianos/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Necrose/induzido quimicamente , Polimetil Metacrilato/química , Prata/química
20.
J Biomed Mater Res A ; 105(1): 253-264, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543370

RESUMO

Nanocrystalline diamond (NCD) coatings have been investigated for improved wear resistance and enhanced hemocompatibility of cardiovascular devices. The goal of this study was to evaluate the effects of NCD surface nanotopography on in vitro hemocompatibility. NCD coatings with small (NCD-S) and large (NCD-L) grain sizes were deposited using microwave plasma chemical vapor deposition and characterized using scanning electron microscopy, atomic force microscopy, contact angle testing, and Raman spectroscopy. NCD-S coatings exhibited average grain sizes of 50-80 nm (RMS 5.8 nm), while NCD-L coatings exhibited average grain sizes of 200-280 nm (RMS 23.1 nm). In vitro hemocompatibility testing using human blood included protein adsorption, hemolysis, nonactivated partial thromboplastin time, platelet adhesion, and platelet activation. Both NCD coatings demonstrated low protein adsorption, a nonhemolytic response, and minimal activation of the plasma coagulation cascade. Furthermore, the NCD coatings exhibited low thrombogenicity with minimal platelet adhesion and aggregation, and similar morphological changes to surface-bound platelets (i.e., activation) in comparison to the HDPE negative control material. For all assays, there were no significant differences in the blood-material interactions of NCD-S versus NCD-L. The two tested NCD coatings, regardless of nanotopography, had similar hemocompatibility profiles compared to the negative control material (HDPE) and should be further evaluated for use in blood-contacting medical devices. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 253-264, 2017.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Materiais Revestidos Biocompatíveis , Teste de Materiais , Nanodiamantes/química , Adesividade Plaquetária/efeitos dos fármacos , Adulto , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Masculino , Tempo de Tromboplastina Parcial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA