Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 39(11): 2919-2936, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34890018

RESUMO

PURPOSE: In amorphous solid dispersions (ASDs), the chemical potential of a drug can be reduced due to mixing with the polymer in the solid matrix, and this can lead to reduced drug release when the polymer is insoluble in the dissolution media. If both the drug and the polymer composing an ASD are ionizable, drug release from the ASD becomes pH-dependent. The goal of this study was to gain insights into the pH-dependent solubility suppression from ASD formulations. METHODS: The maximum release of clotrimazole, a weakly basic drug, from ASDs formulated with insoluble and pH-responsive polymers, was determined as a function of solution pH. Drug-polymer interactions in ASDs were probed using melting point depression, moisture sorption, and solid-state Nuclear Magnetic Resonance spectroscopy (SSNMR) measurements. RESULTS: The extent of solubility suppression was dependent on polymer type and drug loading. The strength of drug-polymer interactions was found to correlate well with the degree of solubility suppression. For the same ASD, the degree of solubility suppression was nearly constant across the solution pH range studied, suggesting that polymer-drug interactions in residual ASD solids was independent of solution pH. The total drug release agrees with the Henderson-Hasselbalch relationship if the suppressed amorphous solubility of the free drug is independent of solution pH. CONCLUSIONS: The mechanism of solubility suppression at different solution pHs appeared to be drug-polymer interactions in the solid-state, where the concentration of the free drug remains the same at variable pHs and the total drug concentration follows the Henderson-Hasselbalch relationship.


Assuntos
Polímeros , Solubilidade , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos
2.
Pharm Nanotechnol ; 7(5): 362-374, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490769

RESUMO

BACKGROUND: There is an unmet need for optimized drug delivery system of psoriasis therapy because of various issues like adverse reaction, permeation problem associated with convention treatment (oral and topical) available for psoriasis. OBJECTIVE: The goal was to develop an ethosomal gel of methotrexate (MTX)-incorporated ethosomes and salicylic acid (SA) and to evaluate and study its ethosomal gel potential in Imiquimod-induced psoriasis animal model to treat symptoms of psoriasis. METHODS: MTX-SA ethosomal gel was prepared by the cold method given by Touitou et al. and optimized by comparing it with MTX ethosomal gel and drug solution. Particle size, zeta potential, entrapment efficiency, and ex-vivo study were selected as the critical quality checking attributes. Psoriatic Area and Severity Index (PASI) score & histopathological examination were done for checking Antipsoriatic potential of MTX-SA ethosomal gel by using the imiquimod-induced psoriasis model. RESULTS: Optimized MTX-SA exhibited a particle size of 376.04 ± 3.47nm, EE(Entrapment efficiency) of 91.77 ± 0.02%. At the end of 24h, MTX-SA ethosomal gel exhibited a slow and prolonged release of MTX (26.13 ± 1.61% versus 6.97 ± 0.06%) compared to MTX drug solution. It also attributes of 43% retention study as compared to drug solution (13%). Besides, it essentially decreased the PASI score with the recuperation of normalcy of the mice's skin, while the MTX-SA gel displayed indications of gentle hyper and parakeratosis toward the completion of investigation when contrasted with the blank gel. CONCLUSION: The developed MTX-SA ethosomal gel formulation can be a promising alternative to existing MTX formulation in topically treating psoriasis.


Assuntos
Antipsicóticos/química , Géis/química , Lipossomos/química , Metotrexato/química , Psoríase/tratamento farmacológico , Ácido Salicílico/química , Acrilatos/química , Administração Cutânea , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/farmacologia , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Cobaias , Humanos , Lecitinas/química , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Camundongos , Paraceratose/tratamento farmacológico , Permeabilidade , Pele/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA