Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(34): 28281-28297, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28766935

RESUMO

The present study elucidates the facile synthesis and exceptional properties of a family of novel poly(ester amide)s (PEAs) based on bis(2-hydroxy ethylene) terephthalamide that was obtained from the poly(ethylene terephthalate) waste. Fourier transform infrared and 1H NMR were used to verify the presence of ester and amide in the polymer backbone. Differential scanning calorimetry data showed that the glass transition temperature decreased with as the chain length of dicarboxylic acids increased. Dynamic mechanical analysis and contact angle studies proved that the modulus values and hydrophobicity increased with as the chain lengths of dicarboxylic acids increased. In vitro hydrolytic degradation and dye release studies demonstrated that the degradation and release decreased with as the chain lengths of dicarboxylic acids increased. Modeling these data illustrated that degradation and release follow first-order degradation and zero-order release, respectively. The in vitro cytocompatibility studies confirmed the minimal toxicity characteristic of these polymers. Osteogenic studies proved that these polymers can be highly influential in diverting the cells toward osteogenic lineage. Alizarin red staining evinced the presence of twice the amount of calcium phosphate deposits by the cells on these polymers when compared to the control. The observed result was also corroborated by the increased expression of alkaline phosphatase. These findings were further validated by the markedly higher mRNA expressions for known osteogenic markers using real time polymerase chain reaction. Therefore, these polymers efficiently promoted osteogenesis. This study demonstrates that the physical properties, degradation, and release kinetics can be altered to meet the specific requirements in organ regeneration as well as facilitate simultaneous polymer resorption through control of the chain length of the monomers. The findings of this study have significant implications for designing cost-effective biodegradable polymers for tissue engineering.


Assuntos
Amidas/química , Materiais Biocompatíveis , Regeneração Óssea , Preparações de Ação Retardada , Etilenos , Ácidos Ftálicos , Poliésteres , Polietilenotereftalatos
2.
Mater Sci Eng C Mater Biol Appl ; 77: 534-547, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532063

RESUMO

Various classes of biodegradable polymers have been explored towards finding alternates for the existing treatments for bone disorders. In this framework, two families of polyesters using an array of crosslinkers were synthesized. One was based on galactiol/adipic acid and the other based on galactitol/dodecanedioic acid. The structures of the polymers were confirmed by FTIR and further confirmed by 1H NMR. DSC showed that the polymers were amorphous and the glass transition temperature increased with increase in crosslinking. DMA and contact angle analysis revealed that the modulus and hydrophobicity increased with increase in crosslinking. Swelling studies demonstrated that %swelling decreased with increase in crosslinking. The in vitro hydrolytic degradation studies and dye release studies of all the polymers exhibited that the degradation and release rate decreased with increase in crosslinking, hydrophobicity and modulus. Degradation and release followed first order kinetics and Higuchi kinetics, respectively. The preliminary in vitro cytotoxicity studies proved that this array of polymers was not cytotoxic. Osteogenic differentiation of pre-osteoblasts was observed in three dimensional (3D) porous scaffolds prepared using these polymers. This study demonstrates the ability to modulate the physical properties, degradation and release kinetics of these biodegradable polymers through smart selection of crosslinkers. The findings of these studies have important implications for developing novel biodegradable polymers for drug delivery and tissue engineering applications.


Assuntos
Engenharia Tecidual , Materiais Biocompatíveis , Osso e Ossos , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Galactitol , Osteogênese , Poliésteres , Polímeros
3.
Int J Biol Macromol ; 93(Pt B): 1591-1602, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26893047

RESUMO

Despite significant advances in recent times, the investigation of discovering a perfect biomaterial is perennial. In this backdrop, blending of natural and synthetic polymers is gaining popularity since it is the easiest way to complement the drawbacks and attain a superlative material. Based on this, the objective of this study was to synthesize a novel polyester, poly(galactitol sebacate), and subsequently blend this polymer with one of the three natural polymers such as alginate, chitosan or ethyl cellulose. FT-IR showed the presence of both the polymers in the blends. 1H NMR confirmed the chemical structure of the synthesized poly (galactitol sebacate). Thermal characterization was performed by DSC revealing that the polymers were amorphous in nature and the glass transition temperatures increased with the increase in ratio of the natural polymers in the blends. SEM imaging showed that the blends were predominantly homogeneous. Contact angle measurements demonstrated that the blending imparted the hydrophilic nature into poly (galactitol sebacate) when blending with alginate or chitosan and hydrophobic when blending with ethyl cellulose. In vitro hydrolytic degradation studies and dye release studies indicated that the polymers became more hydrophilic in alginate and chitosan blends and thus accelerated the degradation and release process. The reverse trend was observed in the case of ethyl cellulose blends. Modeling elucidated that the degradation and dye release followed first order kinetics and Higuchi kinetics, respectively. In vitro cell studies confirmed the cytocompatible nature of the blends. It can be proposed that the chosen natural polymers for blending showed wide variations in hydrophilicity resulting in tailored degradation, release and cytocompatibility properties and thus are promising candidates for use in drug delivery and tissue engineering.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Celulose/análogos & derivados , Quitosana/química , Animais , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Galactitol/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Teste de Materiais , Camundongos , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química
4.
ACS Appl Mater Interfaces ; 8(38): 25170-84, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27599306

RESUMO

Designing biomaterials for bone tissue regeneration that are also capable of eluting drugs is challenging. Poly(ester amide)s are known for their commendable mechanical properties, degradation, and cellular response. In this regard, development of new poly(ester amide)s becomes imperative to improve the quality of lives of people affected by bone disorders. In this framework, a family of novel soybean oil based biodegradable poly(ester amide)s was synthesized based on facile catalyst-free melt-condensation reaction. The structure of the polymers was confirmed by FTIR and (1)H -NMR, which indicated the formation of the ester and amide bonds along the polymer backbone. Thermal analysis revealed the amorphous nature of the polymers. Contact angle and swelling studies proved that the hydrophobic nature increased with increase in chain length of the diacids and decreased with increase in molar ratio of sebacic acid. Mechanical studies proved that Young's modulus decreased with decrease in chain lengths of the diacids and increase in molar ratio of sebacic acid. The in vitro hydrolytic degradation and dye release demonstrated that the degradation and release decreased with increase in chain lengths of the diacids and increased with increase in molar ratio of sebacic acid. The degradation followed first order kinetics and dye release followed Higuchi kinetics. In vitro cell studies showed no toxic effects of the polymers. Osteogenesis studies revealed that the polymers can be remarkably efficient because more than twice the amount of minerals were deposited on the polymer surfaces than on the tissue culture polystyrene surfaces. Thus, a family of novel poly(ester amide)s has been synthesized, characterized for controlled release and tissue engineering applications wherein the physical, degradation, and release kinetics can be tuned by varying the monomers and their molar ratios.


Assuntos
Óleo de Soja , Amidas , Materiais Biocompatíveis , Regeneração Óssea , Poliésteres , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA