Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(2): 904-914, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30582331

RESUMO

Ciliopathies caused by abnormal function of primary cilia include expanding spectrum of kidney, liver, and cardiovascular disorders. There is currently no treatment available for patients with cilia dysfunction. Therefore, we generated and compared two different (metal and polymer) cilia-targeted nanoparticle drug delivery systems (CTNDDS), CT-DAu-NPs and CT-PLGA-NPs, for the first time. These CTNDDS loaded with fenoldopam were further compared to fenoldopam-alone. Live-imaging of single-cell-single-cilium analysis confirmed that CTNDDS specifically targeted to primary cilia. While CTNDDS did not show any advantages over fenoldopam-alone in cultured cells in vitro, CTNDDS delivered fenoldopam more superior than fenoldopam-alone by eliminating the side effect of reflex tachycardia in murine models. Although slow infusion was required for fenoldopam-alone in mice, bolus injection was possible for CTNDDS. Though there were no significant therapeutic differences between CT-DAu-NPs and CT-PLGA-NPs, CT-PLGA-NPs tended to correct ciliopathy parameters closer to normal physiological levels, indicating CT-PLGA-NPs were better cargos than CT-DAu-NPs. Both CTNDDS showed no systemic adverse effect. In summary, our studies provided scientific evidence that existing pharmacological agent could be personalized with advanced nanomaterials to treat ciliopathy by targeting cilia without the need of generating new drugs.


Assuntos
Anti-Hipertensivos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fenoldopam/administração & dosagem , Ouro/química , Hipertensão/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/uso terapêutico , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/metabolismo , Fenoldopam/farmacocinética , Fenoldopam/uso terapêutico , Ouro/metabolismo , Hipertensão/metabolismo , Camundongos , Nanomedicina/métodos , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Medicina de Precisão/métodos , Suínos , Peixe-Zebra
2.
J Microencapsul ; 31(6): 590-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697190

RESUMO

CONTEXT: Solid lipid nanoparticles (SLNs) can efficiently and efficaciously incorporate anti-cancer agents. OBJECTIVE: To prepare and characterise tamoxifen (TAM)-loaded SLNs. MATERIALS AND METHODS: Glyceryl monostearate, Tween-80, and trehalose were used in SLNs. SLNs were tested via dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). RESULTS: Characterisation studies revealed SLNs of about 540 nm with a negative surface charge and confirmed the entrapment of TAM in the SLNs. The entrapment efficiency was estimated to be 60%. DISCUSSION: The in vitro drug release profile demonstrated a gradual increase followed by a release plateau for several days. A drug concentration-dependent increase in cytotoxic activity was observed when the SLNs were evaluated in cell cultures. CONCLUSION: Biocompatible and stable lyophilised SLNs were successfully prepared and found to possess properties that may be utilised in an anti-cancer drug delivery system.


Assuntos
Antineoplásicos Hormonais , Glicerídeos , Teste de Materiais , Nanopartículas/química , Polissorbatos , Tamoxifeno , Trealose , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacocinética , Antineoplásicos Hormonais/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Glicerídeos/química , Glicerídeos/farmacocinética , Glicerídeos/farmacologia , Humanos , Polissorbatos/química , Polissorbatos/farmacocinética , Polissorbatos/farmacologia , Tamoxifeno/química , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia , Trealose/química , Trealose/farmacocinética , Trealose/farmacologia
3.
Pharm Res ; 30(10): 2625-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23722411

RESUMO

PURPOSE: To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs. METHOD: A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue. RESULTS: NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 µm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes. CONCLUSION: The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.


Assuntos
Materiais Biocompatíveis/química , Carbamazepina/administração & dosagem , Portadores de Fármacos/química , Pulmão/metabolismo , Nanoestruturas/química , Água/química , Animais , Carbamazepina/química , Composição de Medicamentos , Emulsões , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Permeabilidade , Solubilidade , Propriedades de Superfície , Suínos , Peixe-Zebra
4.
Biosensors (Basel) ; 4(1): 47-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24839551

RESUMO

Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA