Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomed Mater Res A ; 112(4): 613-624, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37846887

RESUMO

Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin-binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet-like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound-triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin-sensitive PLPs (TS-PLPs), we incorporated a thrombin-cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin-prompted shape change ability was confirmed, the TS-PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS-PLPs exhibit a wound-triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma.


Assuntos
Microgéis , Animais , Camundongos , Trombina , Biomimética , Fibrina/farmacologia , Fibrina/química , Hemostasia , Plaquetas/metabolismo
2.
ACS Nano ; 18(24): 15517-15528, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38836363

RESUMO

Disseminated intravascular coagulation (DIC) is a pathologic state that follows systemic injury and other diseases. Often a complication of sepsis or trauma, DIC causes coagulopathy associated with paradoxical thrombosis and hemorrhage. DIC upregulates the thrombotic pathways while simultaneously downregulating the fibrinolytic pathways that cause excessive fibrin deposition, microcirculatory thrombosis, multiorgan dysfunction, and consumptive coagulopathy with excessive bleeding. Given these opposing disease phenotypes, DIC management is challenging and includes treating the underlying disease and managing the coagulopathy. Currently, no therapies are approved for DIC. We have developed clot-targeted therapeutics that inhibit clot polymerization and activate clot fibrinolysis to manage DIC. We hypothesize that delivering both an anticoagulant and a fibrinolytic agent directly to clots will inhibit active clot polymerization while also breaking up pre-existing clots; therefore, reversing consumptive coagulopathy and restoring hemostatic balance. To test this hypothesis, we single- and dual-loaded fibrin-specific nanogels (FSNs) with antithrombinIII (ATIII) and/or tissue plasminogen activator (tPA) and evaluated their clot preventing and clot lysing abilities in vitro and in a rodent model of DIC. In vivo, single-loaded ATIII-FSNs decreased fibrin deposits in DIC organs and reduced blood loss when DIC rodents were injured. We also observed that the addition of tPA in dual-loaded ATIII-tPA-FSNs intensified the antithrombotic and fibrinolytic mechanisms, which proved advantageous for clot lysis and restoring platelet counts. However, the addition of tPA may have hindered wound healing capabilities when an injury was introduced. Our data supports the benefits of delivering both anticoagulants and fibrinolytic agents directly to clots to reduce the fibrin load and restore hemostatic balance in DIC.


Assuntos
Coagulação Intravascular Disseminada , Ativador de Plasminogênio Tecidual , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/química , Animais , Coagulação Intravascular Disseminada/tratamento farmacológico , Nanogéis/química , Fibrinolíticos/farmacologia , Fibrinolíticos/química , Fibrinolíticos/administração & dosagem , Humanos , Ratos , Fibrina/metabolismo , Fibrina/química , Antitrombinas/farmacologia , Antitrombinas/química , Antitrombinas/administração & dosagem , Camundongos , Masculino , Trombose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Coagulação Sanguínea/efeitos dos fármacos
3.
Mater Horiz ; 9(11): 2863-2871, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36070425

RESUMO

The recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids (e.g., blood, saliva, urine etc.) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk. In this work, we present biofluid manipulators, which allow on-demand, remote and lossless manipulation of virtually any liquid droplet. Our manipulators are designed by integrating thermo-responsive soft actuators with superomniphobic surfaces. Utilizing our manipulators, we demonstrate on-demand, remote and lossless manipulation of biofluid droplets. We envision that our biofluid manipulators will not only reduce manual operations and minimize exposure to infectious agents, but also pave the way for developing inexpensive, simple and portable robotic systems, which can allow point-of-care operations, particularly in developing nations.


Assuntos
Pandemias , Saliva , Humanos , Pandemias/prevenção & controle , Surtos de Doenças , Sistemas Automatizados de Assistência Junto ao Leito , Pessoal de Saúde
4.
Blood Adv ; 5(3): 613-627, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560377

RESUMO

Disseminated intravascular coagulation (DIC) is a pathological coagulopathy associated with infection that increases mortality. In DIC, excessive thrombin generation causes symptoms from formation of microthrombi to multiorgan failure; bleeding risks can also be a concern because of clotting factor consumption. Different clinical events lead to DIC, including sepsis, trauma, and shock. Treatments for thrombotic episodes or bleeding presentation in DIC oppose each other, thus creating therapeutic dilemmas in management. The objective of this study was to develop fibrin-specific core-shell nanogels (FSNs) loaded with tissue-type plasminogen activator (tPA) to treat the microcirculatory complications of DIC, which would facilitate targeted clot dissolution to manage microthrombi and the potential consumptive coagulopathy that causes bleeding. FSNs enhance formation of actively polymerizing clots by crosslinking fibrin fibers, but they can also target preexisting microthrombi and, when loaded with tPA, facilitate targeted delivery to lyse the microthrombi. We hypothesized that this dual action would simultaneously address bleeding and microthrombi with DIC to improve outcomes. In vivo, tPA-FSNs decreased the presentation of multiorgan microthrombi, recovered platelet counts, and improved bleeding outcomes in a DIC rodent model. When incorporated with human DIC patient plasma, tPA-FSNs restored clot structure and clot growth under flow. Together, these data demonstrate that a fibrinolytic agent loaded into fibrin-targeting nanogels could improve DIC outcomes.


Assuntos
Coagulação Intravascular Disseminada , Trombose , Coagulação Intravascular Disseminada/tratamento farmacológico , Fibrina , Humanos , Microcirculação , Nanogéis , Trombose/tratamento farmacológico
5.
J Biomed Mater Res B Appl Biomater ; 108(6): 2599-2609, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32100966

RESUMO

Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet-like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post-trauma bleeding. PLP fibrin-binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post-traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post-trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP-mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony-forming unit assays, a murine liver trauma model, and a murine full-thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag-PLPs have great promise for treating hemorrhage and improving healing following trauma.


Assuntos
Resinas Acrílicas/química , Anti-Infecciosos/farmacologia , Plaquetas , Nanopartículas Metálicas , Prata/administração & dosagem , Animais , Anti-Infecciosos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Retração do Coágulo , Ensaio de Unidades Formadoras de Colônias , Fibrina/química , Fibrina/imunologia , Géis , Hemorragia/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Fígado/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microgéis , Prata/química , Cicatrização
6.
Biomaterials ; 185: 371-382, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292092

RESUMO

Cell behavior is influenced by the biophysical properties of their microenvironments, and the linear elastic properties of substrates strongly influences adhesion, migration, and differentiation responses. Because most biological tissues exhibit non-linear elastic properties, there is a growing interest in understanding how the viscous component of materials and tissues influences cell fate. Here we describe the use of microgel thin films with controllable non-linear elastic properties for investigating the role of material loss tangent on cell adhesion, migration, and myofibroblastic differentiation, which have implications in fibrotic responses. Fibroblast modes of migration are dictated by film loss tangent; high loss tangent induced ROCK-mediated amoeboid migration while low loss tangent induced Rac-mediated mesenchymal cell migration. Low loss tangent films were also associated with higher levels of myofibroblastic differentiation. These findings have implications in fibrosis and indicate that slight changes in tissue viscoelasticity following injury could contribute to early initiation of fibrotic related responses.


Assuntos
Materiais Biocompatíveis/química , Movimento Celular , Fibroblastos/citologia , Géis/química , Adesão Celular , Diferenciação Celular , Linhagem Celular , Módulo de Elasticidade , Fibrose/etiologia , Humanos , Mecanotransdução Celular , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA