Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 170(1): 66-79, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25824111

RESUMO

Toward our goal of personalized medicine, we comprehensively profiled pre-treatment malignant plasma cells from multiple myeloma patients and prospectively identified pathways predictive of favourable response to bortezomib-based treatment regimens. We utilized two complementary quantitative proteomics platforms to identify differentially-regulated proteins indicative of at least a very good partial response (VGPR) or complete response/near complete response (CR/nCR) to two treatment regimens containing either bortezomib, liposomal doxorubicin and dexamethasone (VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our results suggest enrichment of 'universal response' pathways that are common to both treatment regimens and are probable predictors of favourable response to bortezomib, including a subset of endoplasmic reticulum stress pathways. The data also implicate pathways unique to each regimen that may predict sensitivity to DNA-damaging agents, such as mitochondrial dysfunction, and immunomodulatory drugs, which was associated with acute phase response signalling. Overall, we identified patterns of tumour characteristics that may predict response to bortezomib-based regimens and their components. These results provide a rationale for further evaluation of the protein profiles identified herein for targeted selection of anti-myeloma therapy to increase the likelihood of improved treatment outcome of patients with newly-diagnosed myeloma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Plasmócitos/metabolismo , Plasmócitos/patologia , Adulto , Idoso , Ácidos Borônicos/administração & dosagem , Bortezomib , Dexametasona/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Humanos , Lenalidomida , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Polietilenoglicóis/administração & dosagem , Medicina de Precisão/métodos , Proteômica/métodos , Pirazinas/administração & dosagem , Talidomida/administração & dosagem , Talidomida/análogos & derivados
2.
J Clin Invest ; 129(12): 5568-5583, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31557132

RESUMO

Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Terapia Genética , Glicina-tRNA Ligase/genética , Interferência de RNA , Alelos , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA