Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biofouling ; 36(4): 369-377, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32423321

RESUMO

Various quorum quenching (QQ) media have been developed to mitigate membrane biofouling in a membrane bioreactor (MBR). However, most are expensive, unstable and easily trapped in hollow fibre membranes. Here, a sol-gel method was used to develop a mesoporous silica medium entrapping a QQ bacterial strain (Rhodococcus sp. BH4). The new silica QQ medium was able to remove quorum sensing signalling molecules via both adsorption (owing to their mesoporous hydrophobic structure) and decomposition with an enzyme (lactonase), preventing MBR biofouling without affecting the water quality. It also demonstrated a relatively long life span due to its non-biodegradability and its relatively small particle size (<1.0 mm), which makes it less likely to clog in a hollow fibre membrane module.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Incrustação Biológica , Membranas , Membranas Artificiais , Percepção de Quorum , Dióxido de Silício , Purificação da Água
2.
Water Sci Technol ; 72(12): 2301-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26676019

RESUMO

In this study, a ceramic membrane with a pore size of 80 nm was incorporated into an anaerobic membrane bioreactor for excellent stability and integrity. Chemical oxygen demand (COD) removal efficiencies by biodegradation reached 78.6 ± 6.0% with mixed liquor suspended solids (MLSS) of 12.8 ± 1.2 g/L. Even though the total methane generated was 0.3 ± 0.03 L/g CODutilized, around 67.4% of it dissolved in permeate and was lost beyond collection. As a result, dissolved methane was 2.7 times of the theoretical saturating concentration calculated from Henry's law. When transmembrane pressure (TMP) of the ceramic membrane reached 30 kPa after 25.3 d, 95.2% of the total resistance was attributed to the cake layer, which made it the major contributor to membrane fouling. Compared to the mixed liquor, cake layer was rich in colloids and soluble products that could bind the solids to form a dense cake layer. The Methanosarcinaceae family preferred to attach to the ceramic membranes.


Assuntos
Reatores Biológicos , Methanosarcinales/metabolismo , Águas Residuárias , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/classificação , Cerâmica , Membranas Artificiais , Metano/metabolismo , Methanosarcinaceae/metabolismo , Purificação da Água/instrumentação
3.
Water Sci Technol ; 69(10): 2036-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24845318

RESUMO

Two anaerobic forward osmosis (FO) membrane bioreactors (AnFOMBRs), Rchloride and Rsulfate, were operated for 100 days using NaCl and Na2SO4 as the draw solution, respectively. The operating conditions were identical for both systems, with a solids retention time of 30 d, hydraulic retention time of 8 h and using cellulose triacetate FO membrane. High rejection performance of FO membranes resulted in salinity accumulation in the bioreactors. Rchloride and Rsulfate reached a stable conductivity of about 35 and 11 mS/cm, respectively, at the end of the experimental run. Hypersalinity of Rchloride undesirably impacted biological growth; mixed liquor volatile suspended solids in Rchloride was much lower at 376 mg/L, whereas that of Rsulfate was 1,170 mg/L. Organic removals were excellent due to reduced organic loadings at low fluxes and thus, Rsulfate and Rchloride achieved secondary total organic carbon (TOC) removal efficiencies of at least 75%. Both AnFOMBRs started with an initial flux of 5 LMH. Flux for Rchloride stabilized at 0.25 LMH, while Rsulfate at 0.96 LMH. The high salinities of both reactors negatively impacted methanogenic growth. Application of the fluorescence in-situ hybridization (FISH) technique confirmed the ousting of methanogens by sulfate reducing bacteria from the anaerobic consortium. Sparsely located methanogens were detected in Rchloride but none were detected in Rsulfate.


Assuntos
Reatores Biológicos , Membranas Artificiais , Osmose , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Anaerobiose , Fatores de Tempo
4.
Water Res ; 253: 121358, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402750

RESUMO

Membrane biofouling is a challenge to be solved for the stable operation of the seawater reverse osmosis (SWRO) membrane. This study explored the regulation mechanism of quorum sensing (QS) inhibition on microbial community composition and population-level behaviors in seawater desalination membrane biofouling. A novel antibiofouling SWRO membrane (MA_m) by incorporating one of quorum sensing inhibitors (QSIs), methyl anthranilate (MA) was prepared. It exhibited enhanced anti-biofouling performance than the exogenous addition of QSIs, showing long-term stability and alleviating 22 % decrease in membrane flux compared with the virgin membrane. The results observed that dominant bacteria Epsilon- and Gamma-proteobacteria (Shewanella, Olleya, Colwellia, and Arcobacter), which are significantly related to (P ≤ 0.01) the metabolic products (i.e., polysaccharides, proteins and eDNA), are reduced by over 80 % on the MA_m membrane. Additionally, the introduction of MA has a more significant impact on the QS signal-sensing pathway through binding to the active site of the transmembrane sensor receptor. It effectively reduces the abundance of genes encoding QS and extracellular polymeric substance (EPS) (exopolysaccharides (i.e., galE and nagB) and amino acids (i.e., ilvE, metH, phhA, and serB)) by up to 50 % and 30 %, respectively, resulting in a reduction of EPS by more than 50 %, thereby limiting the biofilm formation on the QSI-modified membrane. This study provides novel insights into the potential of QSIs to control consortial biofilm formation in practical SWRO applications.


Assuntos
Incrustação Biológica , Microbiota , Purificação da Água , Percepção de Quorum , Biofilmes , Matriz Extracelular de Substâncias Poliméricas , Osmose , Água do Mar/microbiologia , Membranas Artificiais , Purificação da Água/métodos
5.
Water Res ; 253: 121268, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340700

RESUMO

The release of nanoplastics (NPs) into the environment is growing due to the extensive use of plastic products. Numerous studies have confirmed the negative effects of NPs on microorganisms, which poses uncertainties concerning their impact on nanofiltration (NF) membrane biofouling. This study investigated the initial cell adhesion process, NF membrane biofouling kinetic processes and bacterial responses of Pseudomonas aeruginosa (P. aeruginosa) exposed to varied NPs concentrations (0-50 mg·L-1). Transcriptome analysis demonstrated that low concentration of NPs (0.1 mg·L-1) promoted bacterial quorum sensing, energy metabolism, exopolysaccharide biosynthesis and bacterial secretion systems. Correspondingly, the polysaccharide content increased remarkably to 2.77 times the unexposed control, which served as a protective barrier for bacteria to avoid the impact of NPs-induced stress. Suppressed homologous recombination, microbial metabolic potentials and flagellar assembly were detected in bacteria exposed to a high concentration (50 mg·L-1) of NPs, mainly due to the triggered reactive oxygen species (ROS) generation, genomic DNA damage, and decreased energy production. Overall, enhanced formation of the extracellular polymeric substances (EPS) and aggravated membrane flux decline were observed when NPs interacted with the membrane surface by cell secretions (low NPs levels) or cell lysis (high NPs levels). These findings shed light on understanding the microbial metabolism mechanism and membrane biofouling propensity with NPs stress at both the molecular and gene levels.


Assuntos
Incrustação Biológica , Microplásticos , Membranas Artificiais , Percepção de Quorum , Bactérias , Biofilmes
6.
Water Res ; 247: 120758, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918194

RESUMO

Marine harmful algae bloom (HAB) is a growing threat to desalination plants worldwide. This work proposes ferrous iron/peroxymonosulfate (Fe2+/PMS) as a novel pretreatment technology for seawater reverse osmosis (SWRO) under HAB. Herein, Fe2+/PMS achieved a significantly higher reduction of negative charge of algae-laden seawater as compared to conventional coagulation (i.e., coagulant is Fe3+), which thereby facilitated improved flocculation to remove algal cells, turbidity and algal organics matters (AOMs), and marine Ca2+ (∼430 mg/L) could partially contribute to the enhanced coagulation performance. A new understanding of the improved coagulation efficiency achieved with Fe2+/PMS in seawater has been proposed as compared to freshwater: seawater matrix (e.g., 504 mM Cl-) was demonstrated to significantly enhance the generation of high-valent iron (FeO2+) as the main reactive intermediate instead of the long-recognized Fe3+ and free radicals, as revealed by methyl phenyl sulfoxide (PMSO) probe, radicals scavenging analysis and electron spin resonance (ESR) spectra. This new mechanism is expected to provide valuable insights for the development of more novel oxidative seawater treatment technologies. Of note, while trade-off between particles and AOMs played an important role in membrane fouling reduction by different dosages of Fe2+/PMS, Fe2+/PMS with an optimal dosage of 0.1 mM/0.05 mM achieved an unprecedentedly higher reduction (95.26%) of modified fouling index (MFI) as compared to conventional coagulation (13.28%-42.36% with 0.1-0.2 mM of Fe3+). Optical-photothermal infrared spectromicroscopy with sub-micron spatial resolution was employed to analyze membrane foulants for the first time, and Fe2+/PMS was found to mainly cause reduced cake layer resistance, which was attributed to the collectively reduced concentration of algae cells, micro-particles with sizes from 2 to 10 µm, humic substances and biopolymers. Moreover, Fe2+/PMS resulted in lower dissolved Fe3+ (<0.027 mg/L) in ultrafiltration (UF) permeate, which would make it more reliable for SWRO operation as compared to conventional coagulation. When energy-intensive dissolved air flotation (DAF) was employed to withstand HAB, Fe2+/PMS outperformed it and was instrumental in achieving reduced MFI with 56.4% lower operational cost. In this context, Fe2+/PMS would facilitate a high-performance and low-cost pretreatment technology for seawater desalination plants under HAB.


Assuntos
Ferro , Purificação da Água , Proliferação Nociva de Algas , Purificação da Água/métodos , Membranas Artificiais , Água do Mar
7.
Water Res ; 212: 118098, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114533

RESUMO

Membrane fouling remains a major hindrance to a prevalent application of membrane bioreactor (MBR) for wastewater treatment. Vibrating membrane technology has recently attracted increasing attention in energy-efficient fouling control in MBR compared to air sparging. However, little is known about its fundamental fouling control mechanism and whether the vibrating MBR (VMBR) is a highly effective strategy to control fouling constitutions and fouling sources compared to the conventional air-sparging MBR (ASMBR). This study operated two parallel MBRs with vibrating or air-sparging membrane modules for long-term (215 d) real domestic wastewater treatment. Effects of air sparging and vibration rates on fouling control, fouling development and fouling sources across three fouling stages were comprehensively evaluated. Results showed that the VMBR achieved 70% lower fouling rates compared to the ASMBR due to a remarkable retardation in each fouling stage by membrane vibration. The VMBR significantly reduced over 62.7% of colloidCL and SMPCL within the cake layer (CL) to simultaneously alleviate the reversible and irreversible fouling compared to the ASMBR. The comparatively lower dissolved organic matter (DOM) and biopolymer contents in the cake layer of the VMBR resulted in a slower TMP rise. The main DOMs in the foulants of both MBRs were found in the following order: aromatic protein > soluble microbial by-products > other organics. EPSML from mixed liquor (ML) contributed more DOMs to form membrane foulant than the SMPML in both MBRs. Aromatic proteins and soluble microbial products in the EPSML were markedly reduced in the VMBR but increased in the ASMBR in high-shear phase, demonstrating higher effectiveness in fouling control by membrane vibration. This study provided insights into understanding fouling control, fouling development characteristics and fouling mechanisms between the VMBR and ASMBR, which might guide the researchers and engineers to apply novel vibrating MBRs to better control membrane fouling for holistic wastewater treatment in full scale.


Assuntos
Membranas Artificiais , Purificação da Água , Ar , Reatores Biológicos , Águas Residuárias
8.
Bioresour Technol ; 358: 127389, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636678

RESUMO

This study aimed to implement quorum quenching (QQ) to mitigate membrane fouling in membrane bioreactors (MBRs) treating phenol-rich pharmaceutical wastewater using Rhodococcus sp. BH4 and isolated QQ consortium (QQcs) from activated sludge. Neither BH4 nor QQcs impacted the removal efficiency of chemical oxygen demand (COD) (>94%), phenol (>99%), and ammonium (>99%), indicating that QQ did not have adverse impact on treatment performance. In addition, both BH4 and QQcs effectively retarded membrane fouling, which could be attributed to the reduction of soluble microbial products (SMP). Interestingly, the TMP increase was delayed 68.7% by Rhodococcus sp. BH4, while 31.3% was achieved by QQcs. This difference may be due to the relatively higher degradation for short- and medium-chain N-acyl-homoserine lactones (AHLs) by BH4 compared to the QQcs. Furthermore, the possible presence of quorum sensing (QS) bacteria within QQcs also could have contributed to the less effective fouling control than that of BH4.


Assuntos
Incrustação Biológica , Rhodococcus , Reatores Biológicos/microbiologia , Estudos de Viabilidade , Membranas Artificiais , Preparações Farmacêuticas , Fenol , Percepção de Quorum , Águas Residuárias/microbiologia
9.
Water Res ; 220: 118661, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661502

RESUMO

Rational design of cross-sectional microstructure in ceramic membranes has shown to improve membrane filtration efficacy without affecting rejection performance. In this work, we adopted 3D spray-coating technique to generate multi-layered membrane layers on macro-porous flat-sheet ceramic supports. The thickness of each layer was controlled by spray-coating cycles, and a gradient membrane layer was rationalized by successively coating three ceramic slurries containing alumina powders of gradually refined particle sizes, followed by co-sintering. Gradient membrane layers on both sides of the various sized flat-sheet ceramic supports were fabricated. Compared to the non-gradient counterpart, the gradient membranes showed both higher pure water flux (at the same TMP) and lower membrane resistance, which clearly evidenced the benefits of gradient profile in the membrane layer. Further, their performance in aerobic membrane bioreactors (AeMBR) was comparably studied for the first time. The treatment performance was not significantly affected by the types of membranes used, while the gradient membrane showed better filtration performance (i.e., a slower rise in TMP). Although the fouling mechanisms were revealed to be similar, the fouling layer in the gradient membrane was composed of a higher percentage of smaller foulants compared to that of the non-gradient counterpart. The observed differences were closely correlated to the larger internal pore structure in the gradient membrane. The present work provides a feasible 3D spray-coating technique for the fabrication of gradient flat-sheet ceramic membranes, and clarifies the benefits in AeMBR for domestic wastewater treatment.


Assuntos
Membranas Artificiais , Purificação da Água , Reatores Biológicos , Cerâmica , Estudos Transversais , Filtração , Águas Residuárias
10.
Sci Total Environ ; 835: 155483, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35483462

RESUMO

Microbial carbon fixation pathways have not yet been adequately understood for their role in membrane case layer formation processes. Carbon fixation bacteria can play critical roles in either causing or enhancing cake layer formation in some autotrophic-prone anoxic conditions, such as sulfur-cycling conditions. Understanding the microbes capable of carbon fixation can potentially guide the design of membrane biofouling mitigation strategies in scientific ways. Thus, we used meta-omics methods to query carbon fixation pathways in the cake layers of a full-scale anoxic-oxic biofilm-MBR system treating textile wastewater in this study. Based on the wastewater constituents and other properties, such as anoxic conditions, sulfide-reducing and sulfur-oxidizing bacteria could co-exist in the membrane unit. In addition, low-light radiation conditions could also happen to the membrane unit. However, we could not quantify the light intensity or total energy input accurately because the whole experimental setup was a full-scale system. Potentially complete carbon fixation pathways in the cake layer included the Calvin-Benson-Bassham cycle, Wood-Ljungdahl pathway, and the 3-hydroxypropionate bicycle. We discovered that using aeration could effectively inhibit carbon fixation, which resulted in mitigating membrane cake layer development. However, the aeration resulted in the 3-hydroxypropionate bicycle pathway, presumably used by aerobic sulfur-oxidizing prokaryotes, to become a more abundant carbon fixation pathway in the cake layer under aerobic conditions.


Assuntos
Reatores Biológicos , Águas Residuárias , Bactérias , Biofilmes , Ciclo do Carbono , Membranas Artificiais , Enxofre , Têxteis
11.
Chemosphere ; 300: 134593, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35427670

RESUMO

Membrane fouling is generally considered as a major bottleneck to the wide application of membrane bioreactor (MBR) for high saline mariculture wastewater treatment. Though numerous researches have investigated the membrane fouling of MBR combined with bio-carriers, few studies reveal the impacts of bio-carriers on the characteristics of cake layer and the mechanism of bio-carriers alleviating membrane fouling. In this study, two systems, namely carriers-enhanced MBR (R1) and conventional MBR (R2) were parallel operated, drawing a conclusion that bio-carriers effectively improved the characteristics of cake layer, thus mitigating membrane fouling. Fluorescence excitation emission matrix (EEM) analysis indicated that bio-carriers reduced the adhesion of proteins and humic acid-like materials on membrane surface. Molecular weight (Mw) distribution suggested that soluble microbial products (SMP) with small Mw (6-20 kDa) and biopolymers in extracellular polymeric substances (EPS) (50-300 kDa) was easier to accumulate on membrane surface in R2. The above results indicated that the presence of bio-carriers could effectively reduce the attachment of these organics on membrane surface, contributing to a larger porosity of cake layer and thus mitigating membrane fouling. Meanwhile, gas chromatography-mass spectrometry (GC-MS) clarified that more components were present in R2 than R1. Moreover, the majority of compounds in the SMP were present in both systems, while only 14 compounds in the EPS were the same between R1 and R2. Noticeably, certain aromatics only existed in R2, suggesting that bio-carriers effectively reduced the accumulation of recalcitrant materials, especially aromatics. These results revealed that bio-carriers shifted the precise composition of cake layers.


Assuntos
Águas Residuárias , Purificação da Água , Reatores Biológicos , Substâncias Húmicas , Membranas Artificiais , Esgotos , Águas Residuárias/química
12.
Water Res ; 203: 117521, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391023

RESUMO

Two crucial themes emerge from the growing application of MBRs treating domestic wastewater so far: fouling control and energy demand. The significance of in-situ shear-enhanced methods for fouling control in MBRs has been widely acknowledged with air sparging over decades. However, it is still a challenge to develop energy-efficient ways to replace energy-intensive air sparging for effective fouling control during long-term real domestic wastewater treatment. A novel vibrating flat-sheet ceramic MBR (VMBR) was established for investigating the effects of different shear rates on treatment performance, fouling control and specific energy demand compared with air-sparging MBR (ASMBR). Three levels of shear rates with vibration speed of 120, 80, and 40 RPM in the VMBR, versus specific aeration rate of 1.5, 1.0 and 0.5 LPM in the ASMBR were examined as high-, middle- and low-shear phases. Results showed that the VMBR removed over 78.35% TOC, 89.89% COD and 99.9% NH4-N over three phases, and retarded initial increases in transmembrane pressure to control membrane fouling effectively with average fouling rate around 2.31 kPa/d, 3.59 kPa/d and 10.15 kPa/d, almost 70% lower than the ASMBR in Phase 1, 2 and 3, respectively. Particle size distribution of mixed liquor revealed that colloids and biopolymer clusters were significantly reduced in the VMBR showing less propensity for foulant formation. DOM characteristics further indicated that lower production of polysaccharides and protein (by approximately half in Phases 1 and 2) of SMP and EPS in the VMBR generated lower biopolymer content, promoting better fouling mitigation and enhanced dewaterability compared to the ASMBR. Moreover, the VMBR showed superior energy efficiency for fouling control and could save 51.7% to 78.5% energy of the ASMBR under similar-shear condition. The combination of excellent treatment performance, fouling control and energy efficiency from the VMBR makes this an attractive strategy for future improvement of MBR designs in full-scale application with the potential to replace conventional ASMBR.


Assuntos
Reatores Biológicos , Águas Residuárias , Ar , Cerâmica , Membranas Artificiais
13.
Sci Total Environ ; 772: 145513, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33581520

RESUMO

In this study, two lab-scale Moving Bed Membrane Bioreactors (MBMBR) were setup and operated in parallel to study the effect of coarse and fine bubble aeration on the performances of membrane filtration and denitrification treating domestic wastewater. The bacterial populations in the two MBMBRs were further analyzed to investigate the mechanisms involved in the different denitrification performances. The results showed that coarse bubble aeration could effectively mitigate membrane fouling by decreasing the formation of cake layer, although smaller sizes of bio-flocs were induced. In addition, coarse bubble aeration could also maintain dissolved oxygen (DO) at a relatively lower level without compromising the moving of bio-carriers, which achieved 10% higher total nitrogen removal rate due to anoxic zone created at inner layers of biofilms on bio-carriers. Accumulation of denitrifier (Thiobacillus denitrificans) on the bio-carriers was found under the coarse bubble aeration system, which can explain its superior denitrification performance.


Assuntos
Desnitrificação , Membranas Artificiais , Reatores Biológicos , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias
14.
Sci Total Environ ; 747: 141311, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791416

RESUMO

Mathematical modelling of biological treatment is an effective tool to predict effluent quality. Model calibration is critical to improve the accuracy of simulation, which is normally carried out by fine-tuning the values of parameters according to the practical data. It indicated that huge amount of practical date will be consumed, and it cannot predict the treatment performance of new wastewater. In this study, the main objective was to investigate the feasibility of application BioWin software coupled with determination of sensitive parameters to predict the treatment performance of membrane biological reactors (MBRs) treating real petrochemical wastewater (PW). Model calibrations, i.e., COD fractions of petrochemical wastewater and kinetic parameters of biomass, were carried out using the respirometry method and the relationship between observed and true growth yield coefficients of the three lab-scale MBRs which were operated under different solid retention time (SRT). All the three MBRs had good organic and ammonium removal, with removal efficiencies higher than 80% and 99.9%, respectively. Simulation using the calibrated model also obtained good fit for effluent COD concentration, effluent nitrate concentration and bioreactor's MLSS concentration of all the three MBRs. The mean absolute percentage errors (MAPE) of the simulation mostly were lower than 22%. The results indicated that it is feasible to using BioWin, incorporated with appropriate determination methods of sensitive parameters, to simulate and monitor the treatment performance of MBR treating petrochemical wastewater. This is more time-saving and effective than fine-tuning values of all parameters. This study provides a valuable reference for simulation of industrial wastewater treatment using BioWin.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Biomassa , Reatores Biológicos , Membranas Artificiais
15.
Bioresour Technol ; 314: 123715, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32645570

RESUMO

This study proposed a novel approach of cultivating aerobic granular sludge (AGS) using intertidal wetland sediment (IWS) as inoculant in MBR for saline wastewater treatment. Granulation was observed in IWS-MBR during start-up, with increased sludge particle size (3.1-3.3 mm) and improved settling property (23.8 ml/g). The abundant inorganic particulates (acted as nuclei) and distinctive microbial community in IWS contributed to the granules formation. With the help of AGS, IWS-MBR system exhibited excellent TOC reduction of 90.3 ± 6.1% and significant TN reduction of 31.2 ± 5.0%, while the control MBR (Co-MBR) only showed 58.9 ± 7.2% and 10.4 ± 2.7%, respectively. Meanwhile, membrane fouling was mitigated in IWS-MBR, with a longer filtration cycle of 21.5 d, as compared with that of 8.9 d for Co-MBR. Microbial community analysis revealed that abundant functional bacteria associated with granulation and pollutants removal were enriched from IWS and set the basis for AGS formation and the superior treatment performance.


Assuntos
Esgotos , Águas Residuárias , Antibacterianos , Reatores Biológicos , Membranas Artificiais , Salinidade , Eliminação de Resíduos Líquidos , Áreas Alagadas
16.
Water Res ; 179: 115850, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388050

RESUMO

Quorum quenching (QQ) has been applied as a promising membrane fouling control strategy for anaerobic membrane bioreactors (AnMBRs). Nevertheless, long-term operation of AnMBRs for real domestic wastewater (DWW) treatment needs to be systematically studied to evaluate comprehensive membrane fouling mechanisms and bioprocess performance. In this study, the impact of QQ on membrane fouling was investigated using a quorum quenching AnMBR (QQAnMBR) deploying a bead-entrapped facultative quorum quenching consortium (FQQ) to treat DWW. FQQ was shown to prolong membrane filtration operation by an average of 75%. Reduced proteins (p < 0.005) and carbohydrates (p < 0.005) in the extracellular polymeric substances (EPS) of mixed liquor (ML) were key differentiators that led to lower cake layer (CL) formation. Additionally, reduced biopolymers production (p < 0.05) in EPS improved sludge dewaterability. The findings suggested that QQ could alter fluorescent microbial metabolites of both EPS and CL as unveiled by excitation-emission matrix spectra pattern. Furthermore, colloidal particles (i.e., particles with size larger than 0.45 µm in ML supernatants) production was retarded by QQ, thereafter, also contributed to the reduced CL formation. Pore blockage was slightly increased by QQ, which might be attributed to pore blockage by large (∼230 nm) and small organic compounds (∼51 nm) in soluble microbial products (SMP). However, QQ had no significant impact on organic concentration of SMP, and QQ was not associated with particle size distribution of biomass. QQ performance was further affirmed through suppressed production of C4-HSL, 3-OXO-C6-HSL, and C6-HSL. The overall AHLs degradability of FQQ was well-maintained even after five membrane service cycles (total operation of 70 d). Moreover, QQ had no compromised impact on treatment performance (i.e., chemical oxygen demand (COD) removal and methane yield). Collectively, this study bridged the knowledge gap to bring forward QQ technology in AnMBR for widespread domestic wastewater treatment application.


Assuntos
Percepção de Quorum , Águas Residuárias , Anaerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais , Esgotos
17.
Bioresour Technol ; 295: 122284, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31669869

RESUMO

The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.


Assuntos
Microbiota , Águas Residuárias , Reatores Biológicos , Desnitrificação , Membranas Artificiais , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos
18.
Water Sci Technol ; 59(11): 2213-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19494461

RESUMO

The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.


Assuntos
Reatores Biológicos , Cerâmica , Membranas Artificiais , Eliminação de Resíduos Líquidos/instrumentação , Amônia/análise , Carboidratos/análise , Carbono/análise , Proteínas/análise
19.
Bioresour Technol ; 292: 121852, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31386944

RESUMO

Membrane fouling is considered as a main drawback for MBR technology especially treating industrial wastewater. Therefore, this study aimed to investigate the effect of fouling in membrane bioreactor (MBR) treating pharmaceutical wastewater with the addition of ferric hydroxide. Two identical lab-scale MBRs, namely, a control MBR (Co-MBR) and an enhanced MBR dosed with ferric hydroxide (Fe-MBR), were operated in parallel. The results demonstrate membrane fouling was retarded by 35% with the addition of iron. Further exploration of membrane fouling mechanisms showed iron addition resulted in increase in biomass floc size, enhancement of bacteria activity and reduction of dissolved organic concentration, especially carbohydrate, biopolymer and low molecular weight compounds concentrations in mixed liquor. There was also lower abundance of bacterial associated with biofilm formation in the Fe-MBR compared with the Co-MBR. These findings collectively contributed to the positive impacts on membrane fouling mitigation.


Assuntos
Membranas Artificiais , Águas Residuárias , Reatores Biológicos , Compostos Férricos
20.
Chemosphere ; 71(5): 853-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18164743

RESUMO

This study evaluated the impact of membrane type and material on filtration performance in a submerged membrane bioreactor (MBR) for municipal wastewater treatment. Three types of microfiltration membranes with similar pore size of 0.1 microm but different materials and types, phase-inversed polytetrafluoroethylene (PTFE), track-etched polycarbonate (PCTE) and track-etched polyester (PETE), were used. Changes in permeability with time for the PCTE and PTFE membranes appeared similarly, whereas the PETE membrane exhibited the most rapid flux decline. Lower TOC in the permeate compared to the supernatant was probably due to a combination of biodegradation by the biofilm (cake layer) developed on the membrane surface and further filtration by cake layer and narrowed pores. The faster permeability decline and higher TOC removal rate of the PETE membrane were attributed to an initial permeate flux higher than an average design flux, which led to a faster rate of fouling and thicker cake layer. Therefore, an MBR should not be operated at a flux higher than the average design flux for a specific type of membrane. A gradual increment of biomass concentration did not significantly affect membrane permeability of each membrane investigated. Dissolved organic carbon fractionation results showed that the composition of each fraction between the supernatant and permeates did not change significantly with time, suggesting that membrane hydrophobicity was not a dominant factor affecting MBR fouling in this study. The organic foulants desorbed from the PCTE membrane contained approximately 60% of hydrophobic fraction, which was probably attributable to the extracellular polymeric substances proteins released from the biomass attached to the membrane. While the total filtration resistance of the PTFE membrane was influenced by a higher surface roughness, those of the PETE and PCTE membranes, which had a similar and lower roughness, were affected by the initial operating flux.


Assuntos
Biofilmes , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos , Filtração , Politetrafluoretileno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA