Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Soft Matter ; 19(40): 7696-7707, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37664963

RESUMO

The pervasive presence of plastic packaging has led to significant environmental contamination due to excessive reliance on petrochemicals and the inherent non-biodegradability of these materials. Both bacterial cellulose (BC) and chitosan (CT) films offer a promising option for food packaging purposes due to their sturdy mechanical strength, biodegradability, environmentally friendly manufacturing process, and non-toxic composition. However, the considerable moisture absorption capacity of these eco-friendly materials has hindered their extensive use, as it leads to a reduction in their strength and ability to serve as a barrier. In the present study, we introduced a composite material of BC reinforced with a lauryl gallate grafted CT coating. After grafting CT with lauryl gallate (CT-LG) through enzymatic modification, it showed excellent hydrophobic properties also in a green route of chemistry synthesis. Based on the results of the study, the duration of the water droplet test of the pure CT-LG film and BC coated with CT-LG (BC/CT-LG) films was more than 15 min, showing that water droplets can be completely blocked by the CT-LG coating without water penetration. For the mechanical properties, the wet flexural strength and wet tensile strength of BC/CT-LG films have improved 400% and 70% compared with the original BC. This method produces a composite material with enhanced hydrophobicity and green properties and shows great potential for use in drinking straws or packaging bags.


Assuntos
Celulose , Quitosana , Celulose/química , Embalagem de Alimentos , Água/química , Quitosana/química , Nanopartículas em Multicamadas
2.
J Sci Food Agric ; 103(13): 6625-6639, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259602

RESUMO

BACKGROUND: The pervasive presence of plastic packaging has led to significant environmental contamination due to excessive reliance on petrochemicals and the inherent non-biodegradability of these materials. Bacterial cellulose (BC) films present a viable alternative for food packaging applications, owing to their environmentally friendly synthesis process, non-toxic nature, robust mechanical strength, and biodegradability. However, the high hygroscopicity of such bio-based materials has limited their widespread adoption, as it results in diminished strength and barrier properties. In this study, a novel approach for creating edible, transparent, robust, and high-barrier BC-based composite packaging was proposed through biosynthesis with the incorporation of soy protein isolate and the physical interpenetration of calcium alginate-polyethylene glycol as a composite coating. RESULTS: The finding demonstrated that the synthesized bio-based composite material exhibits stability in water, high optical transparency, complete oil resistance, and full degradability within 1 to 2 months. Furthermore, the composite material displayed enhanced mechanical properties in both dry and wet conditions, with a tensile strength of approximately 84 MPa, outperforming commercially available kraft paper and low-density polyethylene. CONCLUSIONS: Soy protein isolate established a rigid, coherent, and homogeneous network with BC fibrils, thereby augmenting mechanical properties. Calcium alginate can be effectively combined with BC, utilizing polyethylene glycol as a binder and plasticizer, to generate a densely packed structure with reduced hygroscopicity. This bio-based composite material demonstrated considerable potential for application in food packaging and other value-added sectors as a substitute for non-degradable plastics. © 2023 Society of Chemical Industry.


Assuntos
Celulose , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Celulose/química , Proteínas de Soja , Molhabilidade , Alginatos , Polietilenoglicóis
3.
Soft Matter ; 18(1): 236-243, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34874390

RESUMO

Blocking the non-specific binding of fluorescent biomolecules to substrates is one of the most important approaches to minimize the background noise in single-molecule fluorescence detection. Polyethylene glycol (PEG) and its derivatives are the most frequently used self-assembled monolayers (SAMs) for surface passivation because they are particularly effective to reduce the adsorption of a majority of biomolecules. Most studies related to PEG SAMs focus only on the interactions between biomolecules and substrates, while few reports exist in which the interactions between fluorophores and organosilane SAMs are directly examined. The objective of this study is to try to clarify the interactions between fluorescein isothiocyanate (FITC) and PEG SAMs at different ionic strengths. Total internal reflection microscopy (TIRM) was utilized for quantitative analysis of the interactions. At low ionic strength, long-range attractions between FITC-modified polystyrene-silica particles and PEG SAM grafting substrates were observed, even though both of them had an ensemble-averaged negative charge. The origin of this attraction could be correlated to their nonuniformly charged surfaces. At high ionic strength, van der Waals attraction at short distances was measured as the electrostatic interactions were completely screened. Due to the polarizability of the FITC molecule, the van der Waals attractions increased with the thickness of the PEG SAMs. This phenomenon is explained by the hydration shell of the PEG SAMs.


Assuntos
Polietilenoglicóis , Adsorção , Concentração Osmolar , Eletricidade Estática , Propriedades de Superfície
4.
Macromol Rapid Commun ; 41(13): e2000123, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32400926

RESUMO

Substituted naphthalimide (NI) moieties are highly versatile and newly recognized aggregation-induced emission (AIE) building blocks for many potentially useful smart molecules, polymers, and nanoparticles. However, the introduction of NI fluorophore into cross-linked polymeric networks to prepare AIE-active hydrogels still remains underdeveloped. Herein, a novel naphthalimide-based aggregation-induced emissive polymeric hydrogel is reported, followed by its proof-of-concept applications as fluorescence pattern switch and biomimetic actuator. The hydrogel, bearing semi-interpenetrating polymer networks, is synthesized starting from N-isopropylacrylamide, hydroxyethyl methacrylate, and a newly designed NI monomer (4-phenoxy-N-allyl-1,8-naphthalimide, PhAN). Rational molecular design for AIE-active PhAN monomer lies in modification of the NI core with rigid and bulky phenoxy group to break its planarity to produce desirable propeller-shaped molecular conformation. The as-prepared hydrogel is proved to be a aggregation-induced blue-light-emitting hydrogel. It also shows volume phase transition behavior and is endowed with thermally responsive synergistic emission and transmittance change, thus enabling simultaneous regulation of two optical properties merely by one single stimulus. These useful advantages further encourage fabrication of several proto-type fluorescence pattern switching and biomimetic actuating devices. This study may not only enlarge the list of fluorescent hydrogels but also serve as a novel smart optical platform for potential anticounterfeiting, sensing, displaying, or actuating applications.


Assuntos
Hidrogéis , Naftalimidas , Biomimética , Fluorescência , Polímeros
5.
Langmuir ; 35(12): 4205-4217, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30836004

RESUMO

The use of soft microgel particles for stabilizing emulsions has captured increasing attention across a wide range of disciplines in the past decades. Being soft, the nanoparticles, which are spherical in solution, undergo a structure change when adsorbed at the oil-water interface. This morphology change leads to the special dynamic properties of interface layers and packing structures, which then alter the interfacial tension and rheological properties of the interface. In addition, emulsions stabilized by these particles, known as Pickering emulsions, can be triggered by changing a variety of environmental conditions, which is especially desirable in industrial applications such as oil transportation processes and biphasic catalysis, where the emulsions can be stabilized and destabilized on demand. Although many studies of the behavior of soft microgel nanoparticles at interfaces have been reported, there are still many challenges in gaining a full understanding of the structure, dynamics, and effective interactions between microgels at the interface. In this Feature Article, we address some of the most important findings and problems in the field. They include the adsorption kinetics of soft microgel particles, particle conformation at the interface, pH and thermal responsiveness, and the interfacial rheological properties of soft-particle-occupied interfaces. We also discuss some potential benefits of using emulsions stabilized by soft particles for food applications as an alternative to conventional surfactant-based systems. We hope to encourage further investigation of these problems, which would be very beneficial to extending this knowledge to all other related soft matter systems.


Assuntos
Tecnologia de Alimentos , Microgéis/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Propriedades de Superfície , Temperatura
6.
Langmuir ; 34(16): 4820-4829, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29631405

RESUMO

Recently, three-dimensional (3D) scaffolds produced using poly-Pickering high internal phase emulsions (polyHIPEs) technology are particularly attractive in biomedical application. However, until now the most investigated polyHIPEs are hydrophobic composites originating from synthetic polymers. Here we present an investigation of a hierarchical porous protein scaffold templated from oil-in-water (O/W) HIPEs costabilized by fully natural materials, gelatin, and gelatin nanoparticles. Fairly monodispersed gelatin nanoparticles were first synthesized through a two-step desolvation method, and then they were used as emulsifiers together with gelatin to fabricate stable HIPEs with adjustable droplet size distribution and rheology. Monolithic scaffolds were formed by cross-linking the HIPEs with polymers as low as 2.5 wt % in the continuous phase, which appropriately presented a general high porosity and had an interconnected porous morphology with smooth pore walls and textured structures. Furthermore, the scaffolds were degradable and showed reasonably good biocompatibility; L929 cells could adhere to the surface of the materials and exhibited intensive growth and well-spread morphology. This hierarchical porous protein scaffold could, therefore, have important application as a 3D scaffold that offers enhanced cell adhesion and functionality.


Assuntos
Técnicas de Cultura de Células/métodos , Gelatina/química , Nanopartículas/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Emulsões/química , Camundongos , Polímeros , Porosidade
7.
Langmuir ; 34(30): 8798-8806, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29983064

RESUMO

Hydrophilic or zwitterionic polymer-functionalized surfaces have become attractive biomaterials in bioscience and technology due to their excellent protein-resistant ability. Understanding the fundamental interactions between proteins and polymers plays an essential role in the surface design of biomaterials. In this work, we studied the interactions between bovine serum albumin (BSA) and two sorts of polymer brushes including zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in NaCl aqueous solutions directly with a self-established total internal reflection microscope (TIRM) to provide a better understanding of the underlying nonfouling mechanism of polymers. Our results indicate that both the surface charge and brushes length can affect protein adsorption through electrostatic and steric repulsions, respectively. Both PCBMA- and POEGMA-coated surfaces display negative charge properties due to incomplete coverage and ionic adsorption. As a result, strong electrostatic repulsions between proteins and negatively charged polymer-coated surfaces could contribute to the resistance of protein-coated particles in solutions with low ionic strength (0.1, 0.5, and 1 mM) and disappear in solutions with high ionic strength (10 mM). The measured interaction profiles demonstrate that PCBMA brushes could provide apparent steric forces only at high ionic strength (10 mM), where zwitterionic brushes exhibit a relatively extended conformation with a lack of electrostatic forces between intra- and interpolymers. In contrast, the steric repulsion between proteins and POEGMA brushes appears when particles diffuse at low positions in all salt concentrations (0.1-10 mM) with similar steric decay lengths, which results from the unresponsiveness of POEGMA brushes to the salt stimulus.


Assuntos
Microesferas , Polímeros , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Eletricidade Estática , Propriedades de Superfície , Água/química
8.
Langmuir ; 34(36): 10684-10693, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30125116

RESUMO

Magnesium (Mg)-based biometals are increasingly becoming a promising candidate of the next-generation implantable materials due to their unique properties, such as high biocompatibility, favorable mechanical strength, and good biodegradability in physiological conditions. However, the swift corrosion of Mg, resulting in early loss of structural support, has posed an enormous challenge in clinical application of Mg-based implants. To overcome these limitations, herein we developed a novel method, which combines the traditional dip-coating with nonsolvent induced phase separation (NIPS), to fabricate biodegradable PLLA coatings with controlled membrane morphology on pure Mg rods. Unlike the conventional dip-coating, where the polymer solution on the Mg substrates is left to evaporate directly under proper atmosphere, in NIPS, the polymer solution on the substrates is not left to dry but immersed in a nonsolvent of the PLLA, leading to the precipitation of polymer networks. Our results demonstrated that various polymer coatings with different morphologies and inner structures could be easily fabricated by a careful selection of nonsolvents. In comparison to dense PLLA coatings obtained from conventional solvent evaporation, PLLA coatings with a dense surface and porous inner structure were obtained when hexane and petroleum ether were used as the nonsolvents, while PLLA coatings with a completely porous structure were obtained when polar acetone and ethanol were chosen. The electrochemical corrosion tests and immersion tests further showed that all polymer coatings could significantly improve the corrosion resistance and suppress the corrosion rates of the substrates. However, PLLA films obtained via NIPS had much lower pH changes and slower Mg2+ release, implying better protective effects of the fabricated coatings. Based on results of all experiments, a new process for the corrosion mechanism of Mg implants during immersion has also been proposed in this work.


Assuntos
Plásticos Biodegradáveis/química , Materiais Revestidos Biocompatíveis/química , Magnésio/química , Poliésteres/química , Corrosão , Soluções Isotônicas/química , Teste de Materiais , Porosidade , Propriedades de Superfície
9.
Langmuir ; 32(13): 3122-9, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26963571

RESUMO

Coating a liquid with a particle shell not only renders a droplet superhydrophobic but also isolates a well-confined microenvironment for miniaturized chemical processes. Previously, we have demonstrated that particles at the liquid marble interface provide an ideal platform for the site-selective modification of superhydrophobic particles. However, the need for a special chemical reaction limits their potential use for the fabrication of Janus particles with various properties. Herein, we combine the employment of liquid marbles as microreactors with the remarkable adhesive ability of polydopamine to develop a general route for the synthesis of Janus particles from micrometer-sized superhydrophobic particles. We demonstrate that dopamine polymerization and deposition inside liquid marbles could be used for the selective surface modification of microsized silica particles, resulting in the formation of Janus particles. Moreover, it is possible to manipulate the Janus balance of the particles via the addition of surfactants and/or organic solvents to tune the interfacial energy. More importantly, owing to the many functional groups in polydopamine, we show that versatile strategies could be introduced to use these partially polydopamine-coated silica particles as platforms for further modification, including nanoparticle immobilization, metal ion chelation and reduction, as well as for chemical reactions. Given the flexibility in the choice of cores and the modification strategies, this developed method is distinctive in its high universality, good controllability, and great practicability.


Assuntos
Indóis/síntese química , Polímeros/síntese química , Adsorção , Quelantes/química , Dopamina/química , Emulsões , Fluoresceína-5-Isotiocianato/química , Indóis/química , Nanopartículas , Polimerização , Polímeros/química , Poliestirenos/química , Dióxido de Silício/química , Prata/química
10.
Langmuir ; 32(46): 12129-12136, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27794620

RESUMO

In this work, we applied total internal reflection microscopy (TIRM) to directly measure the interactions between three different kinds of macroscopic surfaces: namely bare polystyrene (PS) particle and bare silica surface (bare-PS/bare-silica), PS particle and silica surfaces both coated with bovine serum albumin (BSA) (BSA-PS/BSA-silica), and PS particle and silica surfaces both modified with polyethylene glycol (PEG) (PEG-PS/PEG-silica) polymers, in phosphate buffer solution (PBS) and fetal bovine serum (FBS). Our results showed that in PBS, all the bare-PS, BSA-PS, and PEG-PS particles were irreversibly deposited onto the bare silica surface or surfaces coated either with BSA or PEG. However, in FBS, the interaction potentials between the particle and surface exhibited both free-diffusing particle and stuck particle profiles. Dynamic light scattering (DLS) and elliposmeter measurements indicated that there was a layer of serum proteins adsorbed on the PS particle and silica surface. TIRM measurement revealed that such adsorbed serum proteins can mediate the surface-surface interactions by providing additional stabilization under certain conditions, but also promoting bridging effect between the two surfaces. The measured potential profile of the stuck particle in FBS thus was much wider than in PBS. These quantitative measurements provide insights that serum proteins adsorbed onto surfaces can regulate surface-surface interactions, thus leading to unique moving behavior and stability of colloidal particles in the serum environment.


Assuntos
Poliestirenos/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Adsorção , Polietilenoglicóis , Polímeros , Propriedades de Superfície
11.
Langmuir ; 31(10): 3101-7, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25719226

RESUMO

Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.


Assuntos
Microscopia , Proteínas/química , Adsorção , Animais , Bovinos , Vidro/química , Poliestirenos/química , Dióxido de Silício/química , Proteínas de Soja/química , Propriedades de Superfície
12.
Langmuir ; 30(42): 12503-8, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25280669

RESUMO

The coating of solid particles on the surface of liquid in air makes liquid marbles a promising approach in the transportation of a small amount of liquid. The stabilization of liquid marbles by polymeric latex particles imparts extra triggers such as pH and temperature, leading to the remote manipulation of droplets for many potential applications. Because the functionalized polymeric latexes can exist either as colloidally stable latex or as flocculated latex in a dispersion, the drying of latex dispersions under different conditions may play a significant role in the stabilization of subsequent liquid marbles. This article presents the investigation of liquid marbles stabilized by poly(styrene-co-methacrylic acid) (PS-co-MAA) particles drying under varied conditions. Protonation of the particles before freeze drying makes the particles excellent liquid marble stabilizers, but it is hard to stabilize liquid marbles for particles dried in their deprotonated states. The static properties of liquid marbles with increasing concentrations of protonating reagent revealed that the liquid marbles are gradually undermined by protonating the stabilizers. Furthermore, the liquid marbles stabilized by different particles showed distinct behaviors in separation and merging manipulated by tweezers. This study shows that the initial state of the particles should be carefully taken into account in formulating liquid marbles.


Assuntos
Dessecação , Látex/química , Ácidos Polimetacrílicos/química , Poliestirenos/química
13.
Langmuir ; 30(24): 7052-6, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24898350

RESUMO

Various aspects of particle-stabilized emulsions (or so-called Pickering emulsions) have been extensively investigated during the last two decades, but the preparation of uniform Pickering emulsion droplets via a simple and scalable method has been sparingly realized. We report the preparation of uniform Pickering emulsions by Shirasu porous glass (SPG) membrane emulsification. The size of the emulsion droplets ranging from 10-50 µm can be precisely controlled by the size of the membrane pore. The emulsion droplets have a high monodispersity with coefficients of variation (CV) lower than 15% in all of the investigated systems. We further demonstrate the feasibility of locking the assembled particles at the interface, and emulsion droplets have been shown to be excellent templates for the preparation of monodisperse colloidosomes that are necessary in drug-delivery systems.


Assuntos
Emulsões/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Membranas Artificiais
14.
Biomaterials ; 311: 122697, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38968687

RESUMO

The incorporation of molecular adjuvants has revolutionized vaccine by boosting overall immune efficacy. While traditional efforts have been concentrated on the quality and quantity of vaccine components, the impact of adjuvant and antigen delivery kinetics on immunity remains to be fully understood. Here, we employed poly (lactic-co-glycolic acid) nanoparticle (PLGA NP) -stabilized Pickering emulsion (PPE) to refine the delivery kinetics of molecular adjuvant CpG and antigen, aiming to optimize immune responses. The hierarchical structure of PPE enabled spatially differential loading of CpG and antigen. The component inserted on the oil-water interphase exhibited a rapid release profile, while the one encapsulated in the PLGA NPs demonstrated a sustained release. This led to distinct intracellular spatial-temporal release kinetics. Compared to the PPE with sustained CpG release and burst release of antigen, we found that the PPE with rapid CpG release and sustained antigen release triggered an early and robust activation of Toll-like receptor 9 (TLR9) in direct way. This fostered a more immunogenic microenvironment, significantly outperforming the inverted delivery profile in dendritic cells (DCs) activation, resulting in higher CD40 expression, elevated proinflammatory cytokine levels, sustained antigen cross-presentation, an enhanced Th1 response, and increased CD8+ T cells. Moreover, prior exposure of CpG led to suppressed tumor growth and enhanced efficacy in Varicella-zoster virus (VZV) vaccine. Our findings underscore the importance of tuning adjuvant and antigen delivery kinetics in vaccine design, proposing a novel path for enhancing vaccination outcomes.


Assuntos
Adjuvantes Imunológicos , Antígenos , Camundongos Endogâmicos C57BL , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Vacinação , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Antígenos/imunologia , Nanopartículas/química , Vacinação/métodos , Células Dendríticas/imunologia , Camundongos , Feminino , Emulsões/química , Sistemas de Liberação de Medicamentos/métodos
15.
Acta Biomater ; 177: 178-188, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307480

RESUMO

Glistenings often occur after implanting the intraocular lens (IOL) due to the formation of numerous microvacuoles (MVs) and may lead to deterioration of vision quality. Previous studies showed the formation of MVs was associated with the hydrophobicity of IOL materials. Yet, the mechanism remains an open question due to the complexity of IOL polymer networks. In this study, two commercialized IOLs with similar hydrophobicity are found distinct in the formation of MVs. The 3D growth kinetics of MVs during cooling processes are captured for the first time by digital holographic microscopy (DHM) and the components of MVs are measured by DHM and Raman spectroscopy. The results reveal that the growth of MVs stems from the microphase separation of water and surrounding IOL polymers. A polymer swelling model is thus proposed to describe the microphase separation process which is found dependent on the elasticity of IOL polymer networks. The total volume of MVs is determined by the IOL hydrophobicity, while the elastic force of IOL polymer networks determines the number density and size of MVs. This study demonstrates an approach for characterizing the phase separation of crosslinked polymeric materials in biosystems and sheds lights on the refinement of IOL materials. STATEMENT OF SIGNIFICANCE: Glistenings due to the formation of numerous microvacuoles (MVs) in intraocular lens (IOL) can occur after IOL implantation, which may induce poor quality of vision. However, the underlying mechanism of MVs formation is still an open question. This study establishes an in-situ 3D imaging platform to monitor growth kinetics of the MVs in IOLs, which allows to uncover the mechanism of glistenings formation resulting from the microphase separation. The findings imply the material hydrophobicity influences the total volume of MVs, while the local elasticity of IOL polymer networks determines the number density and the size of MVs. This study offers a new approach for characterizing phase separation in crosslinking biosystems and sheds lights on the refinement of IOL materials.


Assuntos
Lentes Intraoculares , Polímeros , Resinas Acrílicas , Interações Hidrofóbicas e Hidrofílicas
16.
Langmuir ; 29(20): 5974-81, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23627743

RESUMO

Poly(ethylenimine) (PEI) polyelectrolytes have been widely used to tune the stability, rheology, or adhesion properties of colloidal suspensions due to their strong tendency to adsorb to solid surfaces. They have also gained importance as gene carriers in biomedical applications, in which the anionic DNA chains are complexed and condensed to form PEI/DNA polyplexes. Some reported literatures have recently shown that the overdosed PEI chains, which are free in the solution mixture, also play a vital role in promoting the gene transfection, but the reason is unclear. In this work, we present the results of using total internal reflection microscopy (TIRM) to measure the interaction forces between a Brownian colloidal sphere and a flat glass plate in the presence of overdosed free PEI cationic chains, when both surfaces were saturated adsorbed with the PEI chains. The colloidal sphere preadsorbed with PEI chains was chosen to mimic the PEI/DNA polyplex. Results for the potential energy of interaction measured for model polyplex (e.g., PEI-coated sphere) interacting with a PEI-coated glass surface in the presence of overdosed free PEI chains at various pH values and salt concentrations were presented. As can be shown by direct force measurements, the interaction potentials in NaCl salt solution are dominated by repulsive forces originating from diffuse layer overlap and gravitational attraction. However, the presence of free PEI chains in the solution mixture produces a long-ranged (>60 nm) attractive force between two PEI-coated surfaces with the range and magnitude tunable by pH value, PEI, and salt concentrations. The possible mechanisms of this long-ranged attractive force are discussed. A better understanding of this free PEI-induced attractive force will be useful in the development of improved PEI/DNA polyplexes systems for biomedical applications.


Assuntos
DNA/química , Polietilenoimina/química , Adsorção , Coloides/química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Cloreto de Sódio/química , Propriedades de Superfície
17.
J Colloid Interface Sci ; 633: 948-958, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36509038

RESUMO

HYPOTHESIS: Poly(N-isopropylacrylamide) (PNIPAM) microgel particles show considerable hydrophilicity below the lower critical solution temperature (LCST) while they become hydrophobic above LCST. We hypothesize that interfacial wettability could tune particle-surface interaction and subsequent structural relaxation of microgel suspensions at interfaces during the volume phase transition. EXPERIMENTS: The evanescent-wave scattering images of microgels at hydrophilic and hydrophobic interfaces are analyzed by a density-fluctuation autocorrelation function (δACF) over a wide range of particle volume fraction ϕ. The structural relaxation is characterized by the decay behavior of δACF. The scattering images in bulk are also processed as a comparison. FINDINGS: A two-step relaxation decay is observed at both hydrophilic and hydrophobic interfaces. Relative to fast decay, the rate of structural relaxation in slow decay is reduced by a factor of âˆ¼ 500 and âˆ¼ 50 at hydrophilic and hydrophobic interfaces, respectively. The relaxation times obey divergent power-law dependences on intermediate regime of observing length scales at the two interfaces. Besides, the distribution of fluctuation for relaxation time at different local regions reveals that the structural relaxation is much more homogenous at hydrophilic interfaces than that at hydrophobic interfaces, especially at high ϕ.


Assuntos
Microgéis , Temperatura , Suspensões , Temperatura Baixa , Interações Hidrofóbicas e Hidrofílicas
18.
J Colloid Interface Sci ; 640: 199-210, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863177

RESUMO

HYPOTHESIS: Cement augmentation has been widely applied to promote osteoporotic fracture healing, whereas the existing calcium-based products suffer from the excessively slow degradation, which may impede bone regeneration. Magnesium oxychloride cement (MOC) shows promising biodegradation tendency and bioactivity, which is expected to be a potential alternative to the classic calcium-based cement for hard-tissue-engineering applications. EXPERIMENTS: Here, a hierarchical porous MOC foam (MOCF)-derived scaffold with favorable bio-resorption kinetic and superior bioactivity is fabricated through Pickering foaming technique. Then, a systematic characterization in terms of material properties and in vitro biological performance have been conducted to evaluate the feasibility of the as-prepared MOCF scaffold to be a bone-augmenting material for treating osteoporotic defects. FINDINGS: The developed MOCF shows excellent handling performance in the paste state, while exhibiting sufficient load-bearing capacity after solidification. In comparison with the traditional bone cement, calcium deficient hydroxyapatite (CDHA), our porous MOCF scaffold demonstrates a much higher biodegradation tendency and better cell recruitment ability. Additionally, the eluted bioactive ions by MOCF commits to a biologically inductive microenvironment, where the in vitro osteogenesis is significantly enhanced. It is anticipated that this advanced MOCF scaffold will be competitive for clinical therapies to augment osteoporotic bone regeneration.


Assuntos
Cimentos Ósseos , Magnésio , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Magnésio/farmacologia , Cálcio , Durapatita/farmacologia , Osteogênese , Regeneração Óssea , Alicerces Teciduais
19.
Adv Sci (Weinh) ; 10(22): e2300897, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218542

RESUMO

The knowledge of osteoarthritis (OA) has nowadays been extended from a focalized cartilage disorder to a multifactorial disease. Although recent investigations have reported that infrapatellar fat pad (IPFP) can trigger inflammation in the knee joint, the mechanisms behind the role of IPFP on knee OA progression remain to be defined. Here, dysregulated osteopontin (OPN) and integrin ß3 signaling are found in the OA specimens of both human and mice. It is further demonstrated that IPFP-derived OPN participates in OA progression, including activated matrix metallopeptidase 9 in chondrocyte hypertrophy and integrin ß3 in IPFP fibrosis. Motivated by these findings, an injectable nanogel is fabricated to provide sustained release of siRNA Cd61 (RGD- Nanogel/siRNA Cd61) that targets integrins. The RGD- Nanogel possesses excellent biocompatibility and desired targeting abilities both in vitro and in vivo. Local injection of RGD- Nanogel/siRNA Cd61 robustly alleviates the cartilage degeneration, suppresses the advancement of tidemark, and reduces the subchondral trabecular bone mass in OA mice. Taken together, this study provides an avenue for developing RGD- Nanogel/siRNA Cd61 therapy to mitigate OA progression via blocking OPN-integrin ß3 signaling in IPFP.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Camundongos , Animais , Integrina beta3 , Nanogéis , Osteopontina , Articulação do Joelho , Tecido Adiposo , RNA Interferente Pequeno/genética , Oligopeptídeos
20.
Langmuir ; 28(5): 2332-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22260367

RESUMO

Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.


Assuntos
Óleos/química , Polímeros/síntese química , Água/química , Emulsões/síntese química , Emulsões/química , Tamanho da Partícula , Polímeros/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA