RESUMO
The interactions of block copolymers with surfaces can be controlled by coating those surfaces with appropriate statistical copolymers. Usually, a statistical copolymer comprised of monomer units identical to those of the block copolymer is used; that is, typically a poly(styrene)-stat-poly(methyl methacrylate) (PS-stat-PMMA) is used to direct the alignment of poly(styrene)-block-poly(methyl methacrylate) (PS-block-PMMA), and poly(styrene)-stat-poly(2-vinylpyridine) (PS-stat-P2VP) has been used for poly(styrene)-block-poly(2-vinylpyridine) (PS-block-P2VP). Reports of controlling the orientation of block copolymers with statistical copolymers with a dissimilar composition are limited. Here, we demonstrate that this method can be further extended to show that PS-stat-PMMA can be used to control the wetting properties of poly(styrene)-block-poly(D,L-lactide) (PS-block-PDLA). Surfaces were modified with a series of cross-linked PS-stat-PMMA-stat-glycidyl methacrylate terpolymers, and the surface chemistries and energies were assessed using angle-dependent X-ray photoelectron spectroscopy and the two-liquid harmonic method, respectively. From these experiments, an expected neutral compositional window was identified for symmetrical PS-block-PDLA. Moreover, high-resolution SEM, AD-XPS, and grazing-incidence SAXS measurements were used to evaluate the morphology of PS-block-PDLA as a function of the surface composition of the underlying cross-linked copolymer films, and the neutral composition was found to range from 32 to 38 mol % of PS, in the bulk polymer. Ultimately, we demonstrated the determination of nonpreferential surface compositions that allow the self-assembly of lamellae with sizes in the sub-10 nm regime that are oriented perpendicular to the substrate. These findings have important implications for the use of PS-block-PDLA block copolymers in directed self-assembly, most specifically in advanced lithographic processes.
Assuntos
Poliésteres/química , Poliestirenos/química , Estrutura Molecular , Poliestirenos/síntese químicaRESUMO
Aerobic sludge granules are larger, denser microbial aggregates than activated sludge flocs with a smoother and more regular surface, which facilitates greater wastewater treatment intensity. Factors important in their growth are still poorly understood, which is an impediment to the construction and operation of full-scale aerobic sludge granule processes. Data in this article obtained with granules treating an abattoir wastewater provide evidence that aerobic sludge granules are hydrogels. The results also demonstrate a method for characterizing macromolecular associations. The rheological profile of these granules was found to be analogous with that of typical polymer gels. Water uptake or swelling reflects an equilibrium between granule elastic modulus and osmotic pressure, whereby uptake is increased by reducing solute concentration or the elastic modulus. A weakening of the extracellular polymeric substance (EPS) matrix as demonstrated with mechanical spectroscopy was induced by several environmental factors including temperature, pH and ionic strength. Uniform and elastic deformation was observed at low strain. Enzymatic degradation studies indicate that proteins and alpha-polysaccharides were the major granule structural materials. The aerobic sludge granules in the current study were therefore protein-polysaccharide composite physical hydrogels. While aerobic sludge granules treating an abattoir wastewater are used as a case study, many of the fundamental principles detailed here are relevant to other granulation processes. The paradigm established in this study can potentially be applied to better understand the formation of aerobic sludge granules and thus overcome a hurdle in the acceptance of aerobic sludge granulation as an alternative to more traditional wastewater treatment processes.
Assuntos
Bactérias/crescimento & desenvolvimento , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Hidrogel de Polietilenoglicol-Dimetacrilato , Esgotos/química , Esgotos/microbiologia , Aerobiose , Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismoRESUMO
Mineral trioxide aggregate (MTA) restoratives and MTA sealers are commonly used in endodontics. Commonly referenced standards for testing of MTA are ISO 6876, 9917-1 and 10993. A PubMed search was performed relating to the relevant tests within each ISO and "mineral trioxide aggregate". MTA restoratives are typically tested with a mixture of tests from multiple standards. As the setting of MTA is dependent upon hydration, the results of various MTA restoratives and sealers are dependent upon the curing methodology. This includes physical properties after mixing, physical properties after setting and biocompatibility. The tests of flow, film thickness, working time and setting time can be superseded by rheology as it details how MTA hydrates. Physical property tests should replicate physiological conditions, i.e. 37 °C and submerged in physiological solution. Biocompatibility tests should involve immediate placement of samples immediately after mixing rather than being cured prior to placement as this does not replicate clinical usage. Biocompatibility tests should seek to replicate physiological conditions with MTA tested immediately after mixing.
RESUMO
This study explored an alternative approach using rheology to assess setting time. The following cements were tested: ProRoot® MTA (Dentsply, Tulsa, OK, USA), Biodentine® (Septodont, Saint Maur des Fosses, France), Fuji VII®, FujiVII® EP, and Fuji IX® (from GC Corporation, Tokyo, Japan), RealSeal SE™ Sealer (SybronEndo, Amersfoort, The Netherlands), AH 26® and AH Plus (both from Dentsply DeTrey, Konstanz, Germany). Freshly mixed cements were placed into a strain-controlled rheometer (1 rad·s-1 with an applied strain of 0.01%). From measurements of elastic modulus over time, the time taken to reach 90% of the plateau elastic modulus (designated as the setting time) was determined for each cement. In increasing order, the setting times were as follows: Fuji VII EP 3.3 min, Fuji VII 3.6 min, Fuji IX 3.7 min, ProRoot MTA 5.1 min, Biodentine 15.9 min, RealSeal 22.2 min, AH Plus 5933 min, and AH 26 5067 min. However, ProRoot MTA did not yield reliable results. The time to reach the 90% plateau elastic modulus correlates well with the setting time of glass ionomer cements and Biodentine. Using this approach gives much longer setting times for endodontic sealers than previously recognized.
RESUMO
Objective The current standard used to measure setting time for Mineral Trioxide Aggregate (MTA) involves indentation testing with arbitrary weights. This study compared indentation testing against rheological measurements and assessed the influences of particle size and the inclusion of bismuth oxide on the setting time of experimental MTA and Portland cement (PC). Material and methods Two PCs (P1 and P2) of different particle sizes were produced using the same clinker. From these two PCs, two experimental MTAs (M1 and M2) were created with the addition of bismuth oxide. Particle size distributions were assessed using laser diffraction analysis. Indentation setting time tests were performed in accordance to the Gillmore needle test. Elastic modulus was assessed using a strain-controlled rheometer at 1 rad s-1 and an applied strain of 0.01%. Results P1, P2, M1 and M2 cements had median particle sizes of 6.1, 12.5, 6.5 and 13.0 µm, respectively. Using indentation testing, final setting times were ranked P1 < M1 < P2 < M2. The ranking of the final setting time corresponded with the rheological assessment of time required to reach 95% of the elastic modulus plateau. Conclusions The time to reach 95% elastic modulus plateau of 9.3 min corresponds to a time close to the point where the material can be overlaid with another restorative material to give a final restoration. The 95% plateau value for elastic modulus may be a more useful parameter for determining how the setting reaction of PC and MTA cements progress over time.
RESUMO
The sol-gel transition of extracellular polymeric substances (EPS) derived from sludge flocs and granules is investigated in order to explain basic differences between the two aggregates. A reversible, pH dependent sol-gel transition was observed at pH 9.0-12.0 in EPS extracted from granules. At pH <9 granule EPS existed as a strong gel, indicating that their EPS exist in a gel state at normal operating pH of a wastewater treatment system (i.e. 6.0-8.5). This characteristic transition from solution to strong gel was not observed in any of the EPS samples derived from floccular sludges. A transition to a weak gel was however, observed at pH 4.0-5.0. Enriched exopolysaccharides from the granular EPS exhibited rheological behaviour analogous to the granules and the granule EPS. The critical overlap concentration (c*) of the exopolysaccharide concentrate was 0.33% w/w, similar to the c* of other known bacterial exopolysaccharides. Additionally, the protein content was found to be not contributing to the storage modulus of granule EPS gels. These factors suggest that exopolysaccharides or glycosides were the gelling agent in aerobic sludge granules. Given that EPS derived from aerobic sludge granules and flocs are distinguished by such a sol-strong gel transition, these exopolysaccharides therefore likely play an important role in granulation.
Assuntos
Polissacarídeos Bacterianos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Floculação , Géis/química , Concentração de Íons de Hidrogênio , Polimetil Metacrilato/química , Polissacarídeos Bacterianos/metabolismo , Reologia , Esgotos/microbiologia , SolubilidadeRESUMO
The effect of moisture content and temperature on water diffusion into a modified high amylose (< or = 90%) maize thermoplastic starch blend was investigated. Gravimetric and magnetic resonance imaging (MRI) studies were conducted to elucidate the diffusion mechanism and diffusion coefficients for this system. The diffusion coefficient data demonstrated that the rate of water diffusion into this blend was significantly dependent upon temperature and moisture content. Water diffusion was faster at higher temperatures and generally for samples stored at higher relative humidity environments. It was revealed from the gravimetric data that water diffusion into this starch blend was Fickian; however, further analysis of the MRI images found that the water diffusion mechanism was exponentially dependent on the concentration. This result was determined by comparing experimental water concentration profiles to a theoretical model calculated using the implicit Crank-Nicolson finite difference method.