Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 331: 117189, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634420

RESUMO

This study developed a comprehensive techno-economic assessment (TEA) framework to evaluate an innovative algae resource recovery and near zero-liquid discharge potable reuse system (i.e., the main system) in comparison with a conventional potable water reuse system (i.e., the benchmark system). The TEA study aims to estimate the levelized costs of water of individual units and integrated processes including secondary wastewater treatment, advanced water purification for potable reuse, and sludge treatment. This would provide decision-makers valuable information regarding the capital and operational costs of the innovative main system versus a typical potable water reuse treatment train, along with possible routes of cost optimization and improvements for the design of full-scale facilities. The main system consists of (i) a novel algal-based wastewater treatment coupled with a dual forward osmosis and seawater reverse osmosis (Algal FO-SWRO) membranes system for potable water reuse and hydrothermal liquefaction (HTL) to produce bioenergy and subsequent nutrients extraction from the harvested algal biomass. The benchmark system includes (ii) an advanced water purification facility (AWPF) that consists of a conventional activated sludge biological treatment (CAS), microfiltration (MF), brackish water reverse osmosis (BWRO), ultraviolet/advanced oxidation process (UV-AOP), and granular activated carbon (GAC), with anaerobic digestion for sludge treatment. Capital expenditures (CAPEX) and operational expenditures (OPEX) were calculated for each unit of both systems (i.e., sub-systems). Based on a 76% overall water recovery designed for the benchmark system, the water cost was estimated at $2.03/m3. The highest costs in the benchmark system were found on the CAS and the anaerobic digester, with the UV-AOP combined with GAC for hydrogen peroxide (H2O2) quenching as the driving factor in the increased costs of the system. The cost of the main system, based on an overall 88% water recovery, was estimated to be $1.97/m3, with costs mostly driven by the FO and SWRO membranes. With further cost reduction and optimization for FO membranes such as membrane cost, water recovery, and flux, the main system can provide a much more economically viable alternative in its application than a typical benchmark system.


Assuntos
Água Potável , Purificação da Água , Águas Residuárias , Esgotos , Peróxido de Hidrogênio , Carvão Vegetal , Osmose , Membranas Artificiais
2.
J Environ Manage ; 304: 114295, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021589

RESUMO

This study investigated the impact of seasonal variation and operating conditions on recovery of potable quality water from municipal wastewater effluent using an integrated algal treatment process with a dual forward osmosis (FO)-reverse osmosis (RO) membrane system. Pilot study of the algal process treating primary effluent validated the technical viability and seasonal performance during warm weather (May to October, 25-55 °C) using an extremophilic algal strain Galdieria sulphuraria, and during cold weather (November to April, 4-17 °C) using polyculture strains of algae and bacteria. Algal effluents from both seasons were used as the feed solution for the laboratory FO-RO study. In addition, pilot-scale FO-RO experiments were conducted to compare the system performance during treatment of algal effluent and secondary effluent from the conventional treatment facility. At 90% water recovery, the FO-RO achieved over 90% overall rejection of major ions and organic matter using the bench-scale system and over 99% rejection of all contaminants in pilot-scale studies. Detailed water quality analysis indicated that the product water from the integrated system met both the primary and secondary drinking water standards. This study demonstrated that the FO-RO system can be engineered as a viable alternative to treat algal effluent and secondary effluent for potable water reuse independent of seasonal variations and operating conditions.


Assuntos
Água Potável , Purificação da Água , Membranas Artificiais , Osmose , Projetos Piloto , Águas Residuárias
3.
Chemosphere ; 240: 124883, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726606

RESUMO

A coupled algal-osmosis membrane treatment system was studied for recovering potable-quality water from municipal primary effluent. The core components of the system included a mixotrophic algal process for removal of biochemical oxygen demand (BOD) and nutrients, followed by a hybrid forward osmosis (FO)-reverse osmosis (RO) system for separation of biomass from the algal effluent and production of potable-quality water. Field experiments demonstrated consistent performance of the algal system to meet surface discharge standards for BOD and nutrients within a fed-batch processing time of 2-3 days. The hybrid FO-RO system reached water productivity of 1.57 L/m2-h in FO using seawater as draw solution; and permeate flux of 3.50 L/m2-h in brackish water RO (BWRO) and 2.07 L/m2-h in seawater RO (SWRO) at 2068 KPa. The coupled algal-membrane system achieved complete removal of ammonia, fluoride, and phosphate; over 90% removal of calcium, sulfate, and organic carbon; and 86-89% removal of potassium and magnesium. Broadband characterization using high resolution mass spectrometry revealed extensive removal of organic compounds, particularly wastewater surfactants upon algal treatment. This study demonstrated long-term performance of the FO system at water recovery of 90% and with membrane cleaning by NaOH solution.


Assuntos
Reatores Biológicos/microbiologia , Água Potável/análise , Membranas Artificiais , Rodófitas/crescimento & desenvolvimento , Purificação da Água/métodos , Filtração/métodos , Compostos Orgânicos/análise , Osmose , Águas Salinas/química , Água do Mar/química , Águas Residuárias/química , Poluentes Químicos da Água/análise
4.
Bioresour Technol ; 102(10): 5831-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21420293

RESUMO

Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m(2) was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m(2) was recorded.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Esterco , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Eletrodos , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA