Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535264

RESUMO

Hydrofluoric acid (HF) is commonly used as an etchant for the pretreatment of dental computer-aided design/computer-aided manufacturing (CAD-CAM) materials, such as glass-ceramics and resin composites. Despite its effectiveness, the harmful and hazardous nature of HF has raised significant safety concerns. In contrast, ammonium fluoride (AF) is known for its relatively low toxicity but has limited etching capability. This study explored the potential of ammonium hydrogen sulfate (AHS), a low-toxicity and weak acid, to enhance the etching ability of aqueous AF solutions for the bonding pretreatment of CAD-CAM materials. This study investigated five types of aesthetic CAD-CAM materials: lithium disilicate glass, feldspathic porcelain, polymer-infiltrated ceramic networks, resin composites, and zirconia. Seven experimental etchants were prepared by varying the amount of AHS added to aqueous AF solutions, with each etchant used to etch the surfaces of the respective CAD-CAM materials. The treated surfaces were analyzed using scanning electron microscopy and confocal laser scanning microscopy. Additionally, the shear bond strength (SBS) of the CAD-CAM materials treated with a luting agent (resin cement) was evaluated. The results indicated that the AF1/AHS3 (weight ratio AF:AHS = 1:3) etchant had the most substantial etching effect on the surfaces of silica-containing materials (lithium disilicate glass, feldspathic porcelain, polymer-infiltrated ceramic networks, and resin composites) but not on zirconia. The SBS of the materials treated with the AF1/AHS3 etchant was comparable to that of the commercial HF etchant. Hence, an AF/AHS mixed solution could effectively etch silica-containing CAD-CAM materials, thereby enhancing their bonding capabilities.

2.
Dent Mater J ; 43(4): 504-516, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825449

RESUMO

The surface treatment of glass-ceramic-based materials, namely, lithium disilicate glass (IPS e.max CAD), feldspar porcelain (VITABLOCS Mark II), and a polymer-infiltrated ceramic network (VITA ENAMIC), using aqueous fluoride solutions and their influence on luting agent bonding were investigated. Six experimental aqueous fluoride solutions were applied to these materials, and their effects were assessed by surface topological analysis. The obtained results were compared using non-parametric statistical analyses. Ammonium hydrogen fluoride (AHF) etchant demonstrated the greatest etching effect. Subsequent experiments focused on evaluating different concentrations of the AHF etchant for the bonding pretreatment of glass-ceramic-based materials with a luting agent (PANAVIA V5). AHF, particularly at concentrations above 5 wt%, effectively roughened the surfaces of the materials and improved the bonding performance. Notably, AHF at a concentration of 30 wt% exhibited a more pronounced effect on both etching and bonding capabilities compared to hydrofluoric acid.


Assuntos
Cerâmica , Desenho Assistido por Computador , Porcelana Dentária , Fluoretos , Ácido Fluorídrico , Teste de Materiais , Propriedades de Superfície , Fluoretos/química , Cerâmica/química , Porcelana Dentária/química , Ácido Fluorídrico/química , Colagem Dentária/métodos , Condicionamento Ácido do Dente , Silicatos de Alumínio/química , Compostos de Potássio/química , Compostos de Amônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA