Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(30): 10850-10856, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35857436

RESUMO

Technetium (99Tc) is a highly toxic radioactive nuclear wastewater contaminant. Real-time detection of 99Tc is very difficult due to its difficult-to-complex nature. Herein, a novel three-dimensional ionic olefin-linked conjugated microporous polymer (TFPM-EP-Br) is constructed using tetrakis(4-aldehyde phenyl)methane (TFPM) as the central monomer. The unique cationic cavity and highly hydrophobic framework enable TFPM-EP-Br to act as a fluorescent sensor for TcO4-. The fluorophores of TFPM-EP-Br can be quenched due to electron transfer from TFPM-EP-Br to TcO4- and the formation of strongly nonfluorescent complexes. Meanwhile, the regular pore channels are beneficial for the fast mass transfer of TcO4-, resulting in an ultrafast response time (less than 2 s) with an ultralow detection limit (33.3 nM). In addition, the ultrahigh specific surface area enables TFPM-EP-Br to combine the ability to synergistically detect and remove radioactive 99Tc. From this perspective, the novel conjugated microporous polymer has made a breakthrough in the detection and extraction of radioactive contaminants.


Assuntos
Polímeros , Águas Residuárias , Alcenos , Cátions , Tecnécio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA