Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nanobiotechnology ; 17(1): 60, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31084622

RESUMO

BACKGROUND: Nanoscale drug-delivery systems (DDSs) have great promise in tumor diagnosis and treatment. Platelet membrane (PLTM) biomimetic DDSs are expected to enhance retention in vivo and escape uptake by macrophages, as well as minimizing immunogenicity, attributing to the CD47 protein in PLTM sends "don't eat me" signals to macrophages. In addition, P-selectin is overexpressed on the PLTM, which would allow a PLTM-biomimetic DDS to specifically bind to the CD44 receptors upregulated on the surface of cancer cells. RESULTS: In this study, porous nanoparticles loaded with the anti-cancer drug bufalin (Bu) were prepared from a chitosan oligosaccharide (CS)-poly(lactic-co-glycolic acid) (PLGA) copolymer. These were subsequently coated with platelet membrane (PLTM) to form PLTM-CS-pPLGA/Bu NPs. The PLTM-CS-pPLGA/Bu NPs bear a particle size of ~ 192 nm, and present the same surface proteins as the PLTM. Confocal microscopy and flow cytometry results revealed a greater uptake of PLTM-CS-pPLGA/Bu NPs than uncoated CS-pPLGA/Bu NPs, as a result of the targeted binding of P-selectin on the surface of the PLTM to the CD44 receptors of H22 hepatoma cells. In vivo biodistribution studies in H22-tumor carrying mice revealed that the PLTM-CS-pPLGA NPs accumulated in the tumor, because of a combination of active targeting effect and the EPR effect. The PLTM-CS-pPLGA/Bu NPs led to more effective tumor growth inhibition over other bufalin formulations. CONCLUSIONS: Platelet membrane biomimetic nanoparticles played a promising targeted treatment of cancer with low side effect.


Assuntos
Antineoplásicos/química , Materiais Biomiméticos/química , Bufanolídeos/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Transporte Biológico , Plaquetas/metabolismo , Bufanolídeos/efeitos adversos , Bufanolídeos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Preparações de Ação Retardada/efeitos adversos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Oligossacarídeos/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Distribuição Tecidual
2.
Acta Biomater ; 176: 190-200, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199426

RESUMO

Achieving ultra-high tensile strength and exceptional toughness is a longstanding goal for structural materials. However, previous attempts using covalent and non-covalent bonds have failed, leading to the belief that these two properties are mutually exclusive. Consequently, commercial fibers have been forced to compromise between tensile strength and toughness, as seen in the differences between nylon and Kevlar. To address this challenge, we drew inspiration from the disparate tensile strength and toughness of nylon and Kevlar, both of which are polyamide fibers, and developed an innovative approach that combines specific intermolecular disulfide bonds and reversible hydrogen bonds to create ultra-strong and ultra-tough polyamide spider silk fibers. Our resulting Supramolecular polyamide spider silk, which has a maximum molecular weight of 1084 kDa, exhibits high tensile strength (1180 MPa) and extraordinary toughness (433 MJ/m3), surpassing Kevlar's toughness 8-fold. This breakthrough presents a new opportunity for the sustainable development of spider silk as an environmentally friendly alternative to synthetic commercial fibers, as spider silk is composed of amino acids. Future research could explore the use of these techniques and fundamental knowledge to develop other super materials in various mechanical fields, with the potential to improve people's lives in many ways. STATEMENT OF SIGNIFICANCE: • By emulating synthetic commercial fibers such as nylon and polyethylene, we have successfully produced supramolecular-weight polyamide spider silk fibers with a molecular weight of 1084 kDa through a unique covalent bond-mediated linear polymerization reaction of spider silk protein molecules. This greatly surpasses the previous record of a maximum molecular weight of 556 kDa. • We obtained supramolecular polyamide spider silk fibers with both high-tensile strength and toughness. The stress at break is 1180 MPa, and the toughness is 8 times that of kevlar, reaching 433 MJ/m3. • Our results challenge the notion that it is impossible to manufacture fibers with both ultra-high tensile strength and ultra-toughness, and provide theoretical guidance for developing environmentally friendly and sustainable structural materials that meet industrial needs.


Assuntos
Seda , Aranhas , Humanos , Animais , Seda/química , Nylons , Ligação de Hidrogênio , Aranhas/metabolismo , Resistência à Tração
3.
Healthcare (Basel) ; 10(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36360504

RESUMO

BACKGROUND: Osteochondroma (OC) is one of the most common benign tumors of the long bones, but it rarely occurs in the maxillofacial skeleton. However, mandibular condylar OC often leads to severe facial deformity in affected patients, including facial asymmetry, deviation of the chin, and malocclusion. This study aimed to explore the clinical application of individualized 3D-printed templates to accurately and effectively treat condylar OC. METHODS: A total of 8 patients with mandibular condylar OC were treated from July 2015 to August 2021. The enrolled patients (5 women and 3 men) had a median age of 27 years (range: 21-32 years). All patients exhibited symptoms of facial asymmetry and occlusal disorders preoperatively. The digital software used to virtually design the process consisted of three-dimensional reconstruction, 3D-cephalometry analysis, virtual surgery, individualized templates, and postoperative facial soft-tissue prediction. A set of 3D-printed templates (DOS and DOT) were used in all cases to stabilize the occlusion and guide the osteotomy. Then, pre- and post-operative complications, mouth opening, clinical signs, and the accuracy of the CT imaging analysis were all evaluated. All the measurement data were presented as means ± SD; Bonferroni and Tamhane T2 multiple comparison tests were used to examine the differences between the groups. RESULTS: All patients healed uneventfully. None of the patients exhibited facial nerve injury at follow-up. In comparing the condylar segments with T0p and T1, the average deviation of the condylar segments was 0.5796 mm, indicating that the post-operative reconstructed condyles showed a high degree of similarity to the reconstruction results of the virtual surgical plan. CONCLUSIONS: Individualized 3D-printed templates simplified surgical procedures and improved surgical accuracy, proving to be an effective method for the treatment of patients with slight asymmetric deformities secondary to condylar OC.

4.
Adv Healthc Mater ; 9(2): e1901307, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31814332

RESUMO

A nanoplatform that integrates diagnostic and therapeutic functions with intrinsic tumor microenvironment-responsive biodegradability is highly desired. Herein, a biodegradable nanotheranostic agent based on hollow mesoporous organosilica nanoparticles (HMONs), followed by encapsulating of heat shock protein 90 (Hsp 90) inhibitor is described. Then, the pore-engineering including gating with bovine serum albumin-iridium oxide nanoparticles (BSA-IrO2 ) and conjugation of polyethylene glycol (PEG) is conducted to yield 17AAG@HMONs-BSA-IrO2 -PEG (AHBIP) nanotheranostics for multimode computed tomography (CT)/photoacoustic (PA) imaging-guided photodynamic therapy (PDT) and low-temperature photothermal therapy (PTT). Such nanoplatforms show extraordinary photothermal conversion efficiency, high cargo loading (35.4% for 17AAG), and stimuli-responsive release of 17AAG for inhibition of Hsp90, which induces cell apoptosis at low-temperatures (≈41 °C). Also, the IrO2 simultaneously endows the nanotheranostics with catalytic activity in triggering the decomposition of H2 O2 into O2 and thus reducing the tumor hypoxia, as well as protecting normal tissues against H2 O2 -induced inflammation. AHBIP shows good photocatalysis activity for PDT as a result of the generation of superoxide anion by laser irradiation. The resulting AHBIP-mediated synergistic PTT/PDT offers an outstanding therapeutic outcome both in vitro and in vivo. Overall, the incorporation of the BSA-IrO2 and biodegradable HMONs into one nanoplatform has great potential for clinical applications.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzoquinonas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lactamas Macrocíclicas/administração & dosagem , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Animais , Anti-Inflamatórios não Esteroides/química , Benzoquinonas/farmacocinética , Materiais Biocompatíveis/química , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Peróxido de Hidrogênio/química , Irídio/química , Lactamas Macrocíclicas/farmacocinética , Camundongos Endogâmicos C57BL , Camundongos Nus , Oxigênio/farmacocinética , Técnicas Fotoacústicas , Fotoquimioterapia/métodos , Polietilenoglicóis/química , Soroalbumina Bovina/química , Superóxidos/metabolismo , Nanomedicina Teranóstica/instrumentação , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Nanomedicine ; 14: 7141-7153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564870

RESUMO

BACKGROUND: Theranostics, elaborately integrating both therapeutic and diagnostic functions into a nanoplatform holds great potential for precision cancer medicine. METHODS: Herein, a biodegradable theranostic nanoplatform with hyperthermia-induced bubble ability for highly efficient ultrasound (US) imaging-guided chemo-photothermal therapy of breast tumors was developed. The prepared nanoparticles consisted of polydopamine (PDA)-modified hollow mesoporous organosilica nanoparticles (HMONs) with approximately 75 nm in diameter for doxorubicin (DOX) loading and perfluoropentane (PFP) filling. In addition, the pH-sensitive PDA coating served as both gatekeeper controlling DOX release and photothermal agent for inducing hyperthermia. RESULTS: Such nanoplatform (PDA@HMONs-DOX/PFP, PHDP) provides efficient loading (328 mg/g) and controllable stimuli-responsive release of DOX for chemotherapy. The incorporated disulfide bonds in the framework of HMONs endowed nanoparticles with intrinsic glutathione-responsive biodegradability and improved biocompatibility. Benefiting from the hyperthermia upon an 808-nm laser irradiation of PDA, the liquid-gas phase transition of the loaded PFP was induced, resulting in the generation of the nanobubbles, followed by the coalescence into microbubbles. This conversation could enhance the tumor cell uptake of nanoparticles, as well as intensify the US imaging signals. In addition, a synergistic therapeutic effect of our fabricated nanoplatform on cells/tumor growth effect has been systematically evaluated both in vitro and in vivo. CONCLUSION: Therefore, such "all-in-one" PHDP nanoparticles with satisfactory biocompatibility and biodegradability, hyperthermia-induced bubble ability and simultaneous US imaging performance hold great potential for cancer nanotheranostics.


Assuntos
Hipertermia Induzida , Microbolhas , Nanopartículas/química , Fototerapia , Nanomedicina Teranóstica , Ultrassonografia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Endocitose/efeitos dos fármacos , Feminino , Humanos , Indóis/química , Cinética , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Polímeros/química , Distribuição Tecidual/efeitos dos fármacos
6.
J Colloid Interface Sci ; 539: 433-441, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30599399

RESUMO

Molybdenum disulfide (MoS2)-based drug delivery systems have shown considerable potential in cancer nanomedicines. In this work, a multifunctional nanoplatform comprising MoS2 nanosheets decorated with copper sulfide (CuS) and further functionalized with polyethylene glycol (PEG) is reported. The resultant material has a particle size of approximately 115 nm, and can be loaded with doxorubicin (DOX) to a loading capacity of 162.3 mg DOX per g of carrier. Drug release is triggered by two stimuli (near infrared (NIR) irradiation and pH), and the carrier is shown to have excellent colloidal stability. The presence of both MoS2 and CuS leads to very high photothermal conversion efficiency (higher than with MoS2 alone). In vitro experiments revealed that the blank CuS-MoS2-SH-PEG carrier is biocompatible, but that the synergistic application of chemo-photothermal therapy (in the form of CuS-MoS2-SH-PEG loaded with DOX and NIR irradiation) led to greater cell death than either chemotherapy (CuS-MoS2-SH-PEG(DOX) but no NIR) or photothermal therapy (CuS-MoS2-SH-PEG with NIR). A cellular uptake study demonstrated that the nanoplatform can efficiently enter tumor cells, and that uptake is enhanced when NIR is applied. Overall, the functionalized MoS2 material developed in this work exhibits great potential as an efficient system for dual responsive drug delivery and synergistic chemo-photothermal therapy. The route employed in our work thus provides a strategy to enhance photothermal efficacy for transition metal dichalcogenide drug delivery systems.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Cobre/química , Dissulfetos/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Molibdênio/química , Fototerapia , Antibióticos Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Relação Estrutura-Atividade , Propriedades de Superfície
7.
Int J Pharm ; 559: 289-298, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30707933

RESUMO

In this study, we developed novel thermal and redox-responsive micelles based on the Pluronic F127 tri-block copolymer and employed these for redox-responsive intratumor release of bufalin, an anti-cancer drug. Pluronic F127 was first functionalized with carboxylate groups, and then assembled into micelles. The HOOC-F127-COOH micelles are 20 ±â€¯4 nm in size at 37 °C, but expand to 281 ±â€¯5 nm when cooled to 4 °C. This allows for the free diffusion of bufalin into the micellar cores at low temperatures, while at 37 °C the micelles are much more compact and the drug molecules can be effectively held in their interiors. A high encapsulation efficiency and loading content were obtained via drug incorporation at 4 °C. The drug-loaded micelles were cross-linked with cystamine, which contains a disulfide bond responsive to the local cancer microenvironment. In vitro studies showed that drug release from the cross-linked micelles was low under normal physiological conditions, but markedly accelerated upon exposure to conditions representative of the intracellular tumor environment. Confocal microscopy revealed that the cross-linked micelles gave high levels of drug release inside the cells. In vivo studies in mice showed the drug-loaded cross-linked micelles have potent anti-tumor activity, leading to high levels of apoptosis of tumor cells and significant reductions in tumor volume. The drug-loaded cross-linked micelles did not significantly influence body weight, and there was no evidence for detrimental off-target effects. These results indicate that the Pluronic-based micelles developed in this work are promising drug delivery systems for the targeted treatment of cancer.


Assuntos
Bufanolídeos/química , Poloxâmero/química , Animais , Apoptose/efeitos dos fármacos , Bufanolídeos/administração & dosagem , Linhagem Celular , Linhagem Celular Tumoral , Cistamina/química , Dissulfetos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Camundongos , Camundongos Endogâmicos ICR , Micelas , Tamanho da Partícula , Polímeros/química , Microambiente Tumoral/efeitos dos fármacos
8.
Int J Pharm ; 543(1-2): 1-7, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29526623

RESUMO

To prepare temperature and pH dual-responsive drug delivery systems, the thermosensitive polymer poly(N-isopropylacrylamide) (PNIPAAm) was first synthesized by free-radical polymerization. It was then co-dissolved with the pH-sensitive polymer Eudragit® L100-55 (EL100-55) and processed into fibers using electrospinning. Ketoprofen (KET), a model drug, was also incorporated into the composite fibers, and fibers based on a single polymer additionally prepared. The fibers had smooth cylindrical morphologies, and no obvious phase separation could be seen. Using X-ray diffraction, KET was determined to be present in the amorphous state in the fiber matrix. FTIR spectroscopy also indicated the successful incorporation of amorphous KET in the fibers. In vitro drug release studies in media at different pH (4.5 or 7.4) or temperature (25 and 37 °C) showed that the release of KET from the blend PNIPAAm/EL100-55 fibers was dependent both on environmental temperature and pH, reflecting the dual-responsive properties of the fibers. The MTT assay was used to explore the biocompatibility of the PNIPAAm/EL100-55 composite fibers towards L929 fibroblasts. Viability was always found to be >80%, even at polymer concentrations of 100 mg/L. Therefore, the fibers prepared here could lead to the development of multi-responsive materials for drug delivery and tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras/administração & dosagem , Nanofibras/química , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Cetoprofeno/administração & dosagem , Cetoprofeno/química , Camundongos , Tecnologia Farmacêutica
9.
Colloids Surf B Biointerfaces ; 171: 142-149, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025376

RESUMO

We report a dual-responsive drug delivery system prepared by electrospinning. Blend fibers of poly(N-vinylcaprolactam) (PNVCL) and ethyl cellulose (EC) were first prepared, with the aim of developing thermoresponsive sustained release formulations. Eudragit L100-based fibers were then generated to yield pH-sensitive materials. Attempts to produce three-polymer fibers of EC, PNVCL and Eudragit were unsuccessful, and therefore hybrid mats containing two fiber populations (one made of PNVCL/EC, one comprising Eudragit) were instead fabricated by twin-jet electrospinning. Analogous drug-loaded versions of all the formulations were also prepared containing ketoprofen (KET). The fibers were largely smooth and homogeneous, and the addition of KET did not affect their morphology. The PNVCL-containing fiber mats changed from being hydrophilic to hydrophobic when the temperature was increased through the lower critical solution temperature of 33 °C. In vitro drug release profiles showed that the hybrid fiber mats were able to combine the properties of the three polymers, exhibiting both pH-sensitive and thermosensitive properties with sustained release. In addition, they were found to be nontoxic and suitable for cell growth. This study therefore demonstrates that PNVCL/EC/KET-Eudragit/KET multicomponent fiber mats comprise effective and biocompatible materials for targeted drug delivery.


Assuntos
Nanofibras/química , Nanotecnologia , Ácidos Polimetacrílicos/síntese química , Temperatura , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Propriedades de Superfície
10.
ACS Appl Mater Interfaces ; 10(49): 42115-42126, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462492

RESUMO

Noninvasive physical treatment with relatively low intensity stimulation and the development of highly efficient anticancer medical strategy are still desirable for cancer therapy. Herein a versatile, biodegradable, hollow mesoporous organosilica nanocapsule (HMONs) nanoplatform that is capped by the gemcitabine (Gem) molecule through a pH-sensitive acetal covalent bond is designed. The fabricated nanocapsule exhibits desirable small molecule release at the tumor tissues/cell sites and shows a reduced risk for drug accumulation. After loading indocyanine green (ICG), the heat-shock protein 90 (Hsp 90) inhibitor, and 17AAG and modification with polyethylene glycol (NH2-PEG), the resulting ICG-17AAG@HMONs-Gem-PEG exhibited a precisely controlled release of ICG and 17AAG and low-temperature photothermal therapy (PTT) (∼41 °C) with excellent tumor destruction efficacy. In addition, ICG loading conferred the nanoplatform with near-infrared fluorescence imaging (FL) and photoaccoustic (PA) imaging capability. In short, this work not only presents a smart drug self-controlled nanoplatform with pH-responsive payload release and theranostic performance but also provides an outstanding low-temperature PTT strategy, which is highly valid in the inhibition of cancer cells with minimal damage to the organism. Therefore, this research provides a paradigm that has a chemodrug-gated HMONs-based theranostic nanoplatform with intrinsic biodegradability, multimodal imaging capacity, high low-temperature PTT/chemotherapy efficacy, and reduced systemic toxicity.


Assuntos
Doxorrubicina , Hipertermia Induzida , Verde de Indocianina , Nanocápsulas , Compostos de Organossilício , Fototerapia , Animais , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Camundongos , Camundongos Nus , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Compostos de Organossilício/química , Compostos de Organossilício/farmacocinética , Compostos de Organossilício/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
11.
Carbohydr Polym ; 180: 304-313, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29103510

RESUMO

The objective of this work was to prepare a novel filament with good biocompatibility and mechanical performance which can meet the demands of surgical sutures. Bacterial cellulose nanocrystals (BCNCs) were used to reinforce regenerated chitin (RC) fibers to form BCNC/RC filaments. Mechanical performance measurements demonstrated that the strength of the BCNC/RC filament was increased dramatically over the RC analogue. A yarn made of 30 BCNC-loaded fibers also achieved satisfactory mechanical performance, with a knot-pull tensile strength of 9.8±0.6N. Enzymatic degradation studies showed the BCNC/RC materials to have good biodegradability, the rate of which can be tuned by varying the concentration of BCNCs in the yarn. The RC and the BCNC/RC materials had no cytotoxicity and can promote cell proliferation. In vivo experiments on mice demonstrated that suturing with the BCNC/RC yarn can promote wound healing without obvious adverse effects.


Assuntos
Materiais Biocompatíveis/síntese química , Celulose/análogos & derivados , Quitina/análogos & derivados , Nanopartículas/química , Suturas , Animais , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos Bacterianos/química , Resistência à Tração
12.
Mater Sci Eng C Mater Biol Appl ; 79: 516-524, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28629048

RESUMO

A high-strength regenerated bacterial cellulose (RBC)/bacterial cellulose (BC) microfilament of potential use as a biomaterial was successfully prepared via a wet spinning process. The BC not only consists of a 3-D network composed of nanofibers with a diameter of several hundred nanometers but also has a secondary structure consisting of highly oriented nanofibrils with a diameter ranging from a few nanometers to tens of nanometers which explains the reason for the high mechanical strength of BC. Furthermore, a strategy of partially dissolving BC was used and this greatly enhanced the mechanical performance of spun filament and a method called post-treatment was utilized to remove residual solvents from the RBC/BC filaments. A comparison of structure, properties, as well as cytocompatibility between BC nanofibers and RBC/BC microfilaments was achieved using morphology, mechanical properties, X-ray Diffraction (XRD) and an enzymatic hydrolysis assay. The RBC/BC microfilament has a uniform groove structure with a diameter of 50-60µm and XRD indicated that the crystal form was transformed from cellulose Iα to cellulose IIII and the degree of crystallinity of RBC/BC (33.22%) was much lower than the original BC (60.29%). The enzymatic hydrolysis assay proved that the RBC/BC material was more easily degraded than BC. ICP detection indicated that the residual amount of lithium was 0.07mg/g (w/w) and GC-MS analysis showed the residual amount of DMAc to be 8.51µg/g (w/w) demonstrating that the post-treatment process is necessary and effective for removal of residual materials from the RBC/BC microfilaments. Also, a cell viability assay demonstrated that after post-treatment the RBC/BC filaments had good cytocompatibility.


Assuntos
Celulose/química , Citoesqueleto de Actina , Materiais Biocompatíveis , Nanofibras , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA