Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hum Evol ; 120: 76-91, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752005

RESUMO

The well-dated Pleistocene sediments at Olduvai Gorge have yielded a rich record of hominin fossils, stone tools, and vertebrate faunal remains that, taken together, provide insight to hominin behavior and paleoecology. Since 2008, the Olduvai Geochronology and Archaeology Project (OGAP) has undertaken extensive excavations in Bed II that have yielded a large collection of early Pleistocene stone tools and fossils. The strata of Lower, Middle and Upper Bed II at Olduvai Gorge capture the critical transition from Oldowan to Acheulean technology and therefore provide an opportunity to explore the possible role of biotic and abiotic change during the transition. Here, we analyze newly discovered and existing fossil teeth from Bed II sites using stable isotope and tooth wear methods to investigate the diets of large mammals. We reconstruct the dietary ecology of Bed II mammals and evaluate whether vegetation or hydroclimate shifts are associated with the technological change. Combined isotope and tooth wear data suggest most mammals were C4 grazers or mixed feeders. Carbon isotope data from bulk enamel samples indicate that a large majority of Bed II large mammals analyzed had diets comprising mostly C4 vegetation (>75% of diet), whereas only a small number of individuals had either mixed C3-C4 or mostly C3 diets (<25% C4). Mesowear generally indicates an increase of the abrasiveness of the diet between intervals IIA and IIB (∼1.66 Ma), probably reflecting increased grazing. Microwear indicates more abrasive diets in interval IIA suggesting stronger seasonal differences at the time of death during this interval. This is also supported by the intratooth isotope profiles from Equus oldowayensis molars, which suggest a possible decrease in seasonality across the transition. Neither stable isotope nor tooth wear analyses indicate major vegetation or hydrological change across the Oldowan-Acheulean transition.


Assuntos
Isótopos de Carbono/análise , Dieta , Fósseis , Mamíferos/fisiologia , Dente/anatomia & histologia , Animais , Evolução Cultural , Comportamento Alimentar , Hominidae , Tanzânia , Tecnologia
2.
J Hum Evol ; 120: 203-214, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28870375

RESUMO

The Oldowan site HWK EE (Olduvai Gorge, Tanzania) has yielded a large fossil and stone tool assemblage at the transition from Lower to Middle Bed II, ∼1.7 Ma. Integrated tooth wear and stable isotope analyses were performed on the three most abundant ungulate taxa from HWK EE, namely Alcelaphini, cf. Antidorcas recki (Antilopini) and Equus oldowayensis (Equini), to infer dietary traits in each taxon. Some paleodietary changes were observed for cf. A. recki and E. oldowayensis based on tooth wear at the transition from the Lemuta to the Lower Augitic Sandstone (LAS) interval within the HWK EE sequence. Stable carbon and oxygen isotope data show no significant changes in bulk diet or hydroclimate between the Lemuta and LAS intervals. The combined tooth wear and stable isotope data suggest similar paleoecological conditions across the two HWK EE intervals, but that differences in vegetation consumed among ungulates may have resulted in changes in dietary niches. Integrating tooth wear and stable isotope analyses permits the characterization of ungulate diets and habitats at HWK EE where C4 dominated and minor mixed C3 and C4 habitats were present. Our results provide a better understanding of the paleoenvironmental conditions of the Lemuta and LAS intervals. The LAS assemblage was mostly accumulated during relatively dry periods at Olduvai Gorge when grasses were not as readily available and grazing animals may have been more nutritionally-stressed than during the formation of the Lemuta assemblage. This helps to contextualize variations in hominin and carnivore feeding behavior observed from the faunal assemblages produced during the two main occupations of the site.


Assuntos
Artiodáctilos/fisiologia , Dieta , Perissodáctilos/fisiologia , Mamífero Proboscídeo/fisiologia , Dente/anatomia & histologia , Dente/química , Animais , Arqueologia , Artiodáctilos/anatomia & histologia , Isótopos de Carbono/análise , Comportamento Alimentar , Isótopos de Oxigênio/análise , Paleontologia , Perissodáctilos/anatomia & histologia , Mamífero Proboscídeo/anatomia & histologia , Tanzânia
3.
J Hum Evol ; 120: 215-235, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28797516

RESUMO

The regular consumption of large mammal carcasses, as evidenced by butchery marks on fossils recovered from Early Stone Age archaeological sites, roughly coincides with the appearance of Homo habilis. However, the significance of this niche expansion cannot be appreciated without an understanding of hominin feeding behavior and their ecological interactions with mammalian carnivores. The Olduvai Geochronology and Archaeology Project (OGAP) has recovered a large and well-preserved fossil assemblage from the HWK EE site, which was deposited just prior to the first appearance of Acheulean technology at Olduvai Gorge and likely represents one of the last H. habilis sites at Olduvai. This taphonomic analysis of the larger mammal fossil assemblage excavated from HWK EE shows evidence of multiple occupations over a long period of time, suggesting the site offered resources that were attractive to hominins. There was a water source indicated by the presence of fish, crocodiles, and hippos, and there was possible tree cover in an otherwise open habitat. The site preserves several stratigraphic intervals with large fossil and artifact assemblages within two of these intervals. Feeding traces on bone surfaces suggest hominins at the site obtained substantial amounts of flesh and marrow, particularly from smaller size group 1-2 carcasses, and exploited a wide range of taxa, including megafauna. A strong carnivore signal suggests hominins scavenged much of their animal foods during the two main stratigraphic intervals. In the later interval, lower carnivore tooth mark and hammerstone percussion mark frequencies, in addition to high epiphyseal to shaft fragment ratios, suggest hominins and carnivores did not fully exploit bone marrow and grease, which may have been acquired from nutritionally-stressed animals that died during a dry period at Olduvai. The diversity of fauna that preserve evidence of butchery suggests that the HWK EE hominins were opportunistic in their acquisition of carcass foods.


Assuntos
Dieta , Comportamento Alimentar , Fósseis , Hominidae/fisiologia , Animais , Arqueologia , Paleontologia , Tanzânia
4.
J Hum Evol ; 102: 1-11, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012460

RESUMO

Bone surface modifications have become important indicators of hominin behavior and ecology at prehistoric archaeological sites. However, the method by which we identify and interpret these marks remains largely unchanged despite decades of research, relying on qualitative criteria and lacking standardization between analysts. Recently, zooarchaeologists have begun using new technologies capable of capturing 3-D data from bone surface modifications to advance our knowledge of these informative traces. However, an important step in this research has been overlooked and after years of work, we lack both a universal and replicable protocol and an understanding of the precision of these techniques. Here we propose a new standard for identifying bone surface modifications using high-resolution 3-D data and offer a systematic and replicable approach for researchers to follow. Data were collected with a white-light non-contact confocal profilometer and analyzed with Digital Surf's Mountains® software. Our data show that when methods are standardized, results between researchers are statistically indistinguishable. Multivariate analyses using the measured parameters allow discrimination between stone tool cut marks and mammalian carnivore tooth marks with 97.5% accuracy. Application of this method to fossil specimens resulted in 100% correspondence with identifications made by an experienced analyst using macroscopic observations of qualitative features of bone surface modifications. High-resolution 3-D analyses of bone surface modifications have great potential to improve the reliability and accuracy of taphonomic research, but only if our methods are replicable and precise.


Assuntos
Arqueologia/métodos , Osso e Ossos/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae , Imageamento Tridimensional/métodos , Animais , Análise Multivariada , Comportamento de Utilização de Ferramentas
5.
J Hum Evol ; 63(2): 408-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21937084

RESUMO

Taphonomic analysis of the Olduvai Hominid (OH) 8 left foot from FLK NN Level 3 and the OH 35 left leg from FLK Level 22 (Zinjanthropus level) in Middle Bed I, Olduvai Gorge, indicates that both were fed upon by crocodiles. Both bear extensive tooth marking, including bisected tooth marks diagnostic of crocodylian feeding. The location of the bisected tooth marks on the distal tibia and the talus indicates disarticulation of the foot by crocodiles. The broken proximal ends of the tibia and fibula are more typical of feeding by a leopard-like carnivore, as is damage to the OH 7 mandible and parietals that are associated with and may derive from the same individual as OH 8. Previous work showing a close articulation of the foot and the leg has been used to suggest that the two specimens belong to the same individual despite deriving from sites separated by 200 m and slightly different stratigraphic levels according to previous work. The location and agent of tooth marking and the nature of gross damage do not refute this hypothesis, but the punctures on the talus and distal tibia differ in size and sharpness. Recent work shows that the stratigraphic discrepancy between OH 8 and OH 35 is greater than previously thought, refuting the single-individual hypothesis. Although seemingly unlikely, this denotes that two hominids represented by rarely found leg and foot elements both lost their left foot to crocodiles at nearby sites within a 6,000 year interval. We cannot determine if the hominids were preyed upon by crocodiles or mammalian carnivores. However, the carnivore damage to them and associated faunal remains suggests that high predation risk constrained hominid activities involving discard of the stone artifacts found at these sites. This finding is inconsistent with the interpretation of the sites as home bases or living floors.


Assuntos
Jacarés e Crocodilos , Comportamento Alimentar , Fósseis , Hominidae , Comportamento Predatório , Animais , Osso e Ossos , Carnívoros , , Perna (Membro) , Paleontologia , Tanzânia , Dente
6.
J Hum Evol ; 63(2): 429-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21784504

RESUMO

Dental microwear analysis has proven to be a valuable tool for the reconstruction of aspects of diet in early hominins. That said, sample sizes for some groups are small, decreasing our confidence that results are representative of a given taxon and making it difficult to assess within-species variation. Here we present microwear texture data for several new specimens of Homo habilis and Paranthropus boisei from Olduvai Gorge, bringing sample sizes for these species in line with those published for most other early hominins. These data are added to those published to date, and microwear textures of the enlarged sample of H. habilis (n = 10) and P. boisei (n = 9) are compared with one another and with those of other early hominins. New results confirm that P. boisei does not have microwear patterns expected of a hard-object specialist. Further, the separate texture complexity analyses of early Homo species suggest that Homo erectus ate a broader range of foods, at least in terms of hardness, than did H. habilis, P. boisei, or the "gracile" australopiths studied. Finally, differences in scale of maximum complexity and perhaps textural fill volume between H. habilis and H. erectus are noted, suggesting further possible differences between these species in diet.


Assuntos
Dieta , Fósseis , Hominidae , Paleodontologia , Dente , Animais , Dentição , Alimentos , Hominidae/classificação , Mastigação , Tanzânia , Desgaste dos Dentes
8.
J Hum Evol ; 50(2): 142-62, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16263152

RESUMO

Neotaphonomic studies have determined the patterns of bone damage created by larger mammalian carnivores when consuming mammalian carcasses. Typically, mammalian carnivores gnaw and break bones to various degrees in order to access marrow, grease, and brain tissue. In contrast, crocodiles attempt to swallow whole parts of mammal carcasses, inflicting in the process tooth marks and other feeding traces on some of the bones they are unable to ingest. Although crocodiles are major predators of larger mammals along the margins of protected tropical rivers and lakes, their feeding traces on bone have received little systematic attention in neotaphonomic research. We present diagnostic characteristics of Crocodylus niloticus damage to uningested mammal bones resulting from a series of controlled observations of captive crocodile feeding. The resulting bone assemblages are composed of primarily complete elements from articulating units, some of which bear an extremely high density of shallow to deep, transversely to obliquely oriented tooth scores over often large areas of the bone, along with shallow to deep pits and punctures. Some of the tooth marks (bisected pits and punctures, hook scores) have a distinctive morphology we have not observed to be produced by mammalian carnivores. The assemblages are also characterized by the retention of both low- and high-density bone portions, an absence of gross gnawing, and minimal fragmentation. Together, the damage characteristics associated with feeding by crocodiles are highly distinctive from those produced by mammalian carnivores. Modern surface bone assemblages along the Grumeti River in Tanzania's Serengeti National Park contain a mixture of specimens bearing damage characteristic of crocodiles and mammalian carnivores. Comparison of Plio-Pleistocene fossil bones from Olduvai Gorge, Tanzania, to bones damaged by captive and free-ranging Nile crocodiles reveals direct evidence of fossil crocodilian feeding from larger mammal bones associated with Oldowan stone artifacts.


Assuntos
Jacarés e Crocodilos , Comportamento Alimentar , Fósseis , Animais , Mordeduras e Picadas , Osso e Ossos , Mamíferos , Tanzânia
9.
Science ; 299(5610): 1217-21, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12595689

RESUMO

Excavation in the previously little-explored western portion of Olduvai Gorge indicates that hominid land use of the eastern paleobasin extended at least episodically to the west. Finds included a dentally complete Homo maxilla (OH 65) with lower face, Oldowan stone artifacts, and butchery-marked bones dated to be between 1.84 and 1.79 million years old. The hominid shows strong affinities to the KNM ER 1470 cranium from Kenya (Homo rudolfensis), a morphotype previously unrecognized at Olduvai. ER 1470 and OH 65 can be accommodated in the H. habilis holotype, casting doubt on H. rudolfensis as a biologically valid taxon.


Assuntos
Fósseis , Hominidae , Animais , Dentição , Meio Ambiente , Ossos Faciais/anatomia & histologia , Hominidae/anatomia & histologia , Hominidae/classificação , Humanos , Estilo de Vida , Mandíbula/anatomia & histologia , Maxila/anatomia & histologia , Paleodontologia , Paleontologia , Estações do Ano , Crânio/anatomia & histologia , Tanzânia , Terminologia como Assunto , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA