Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(17): e2300186, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37265024

RESUMO

Water containing low amounts of cellulose nanofiber (CNF) is widely used as a thickening agent owing to its three unique properties: high transparency, viscosity, and controllable viscosity based on the shear rate. CNF dry powders are used to reduce the transportation and storage costs or expand applications as a thickening agent. Herein, the preparation of CNF dry powders that can be used to obtain redispersions while maintaining the aforementioned properties is reported. In this regard, the dehydration and vaporization procedures for a CNF water dispersion without using additives are discussed. When dry powders are prepared by removing water by boiling, their redispersions do not exhibit all their unique properties because of dense aggregations. However, when their redispersions are vigorously stirred to break the dense aggregations, they become transparent, although they do not recover their initial viscosity. Freeze-dried powders recover all their initial properties after redispersion. Nevertheless, their large volume does not reduce the transportation and storage costs. When the liquid is evaporated from the solvent-exchanged CNF organogels, their redispersions also fully recover all their properties. Furthermore, the evaporative dry powders with dense small volumes and good handling contribute to reducing the transportation and storage costs.


Assuntos
Nanofibras , Água , Pós , Viscosidade , Celulose
2.
Biomacromolecules ; 14(4): 1160-5, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23428212

RESUMO

Ultrastrong, transparent, conductive and printable nanocomposites were successfully prepared by mixing single-walled carbon nanotubes (CNTs) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with abundant sodium carboxyl groups on the crystalline nanocellulose surfaces. The surface-anionic cellulose nanofibrils had reinforcing and nanodispersing effects on the CNTs both in water used as the dispersed medium and in the dried composite film, providing highly conductive and printable nanocomposites with a small amount of CNTs. TOCNs are therefore expected as an effective flexible matrix that can be used as an alternative to conventional polymers for various electrical materials, when nanocomposited with CNTs and also graphene. Our findings provide a promising route to realize green and flexible electronics.


Assuntos
Nanocompostos/química , Nanotubos de Carbono/química , Celulose/química , Óxidos N-Cíclicos/química , Condutividade Elétrica , Resinas Sintéticas/química
3.
Biomacromolecules ; 13(5): 1340-9, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423896

RESUMO

The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.


Assuntos
Celulose/química , Gluconacetobacter xylinus/química , Microfibrilas/química , Nanofibras/química , Tamanho da Partícula , Análise Espectral Raman
4.
Carbohydr Polym ; 254: 117460, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357919

RESUMO

We propose a new methodology for direct evaluation of the degree of fibrillation of fibrillating pulp suspensions through the pixel-resolved retardation distribution. Through simple normalization by just injecting a pulp suspension with a certain concentration into a quartz flow channel with a constant cross-sectional shape, the degree of fibrillation (i.e., the degree of bundling of cellulose molecular chains) can be directly mapped by the retardation gradation, reflecting locally high retardation (pulp fibers), smaller retardation (balloons on fibrillating pulps), and much smaller retardation close to water (dispersed nanofibers). Both the average retardation and standard deviation are found to be the direct indicators of the degree of fibrillation. We envision that the proposed methodology will become the future standard for determining the degree of fibrillation by the retardation distribution, and it will pave the way for more precise control of pulp fibrillation and more sophisticated applications of cellulose nanofiber suspensions.


Assuntos
Celulose/química , Cryptomeria/química , Nanofibras/química , Madeira/química , Birrefringência , Celulose/ultraestrutura , Humanos , Nanofibras/ultraestrutura , Suspensões/química , Água/química
5.
ACS Appl Mater Interfaces ; 8(9): 6190-9, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26830466

RESUMO

Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 µs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields.


Assuntos
Cobre/química , Eletrônica , Nanofios/química , Dimetilpolisiloxanos/química , Eletrodos , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Fótons , Poliuretanos/química , Temperatura
6.
Nanoscale ; 7(7): 2926-32, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25588044

RESUMO

The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.


Assuntos
Nanopartículas Metálicas/química , Monitorização Ambulatorial/instrumentação , Nanotecnologia/métodos , Nanofios/química , Prata/química , Braço , Elasticidade , Elastômeros , Capacitância Elétrica , Eletrodos , Eletrônica , Desenho de Equipamento , Dedos , Humanos , Perna (Membro) , Teste de Materiais , Polietilenotereftalatos/química , Pressão , Reprodutibilidade dos Testes , Robótica , Sensibilidade e Especificidade , Pele Artificial , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 3(2): 490-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21186815

RESUMO

In this study, we demonstrate that bacterial cellulose (BC) networks can be cross-linked via glyoxalization. The fracture surfaces of samples show that, in the dry state, less delamination occurs for glyoxalized BC networks compared to unmodified BC networks, suggesting that covalent bond coupling between BC layers occurs during the glyoxalization process. Young's moduli of dry unmodified BC networks do not change significantly after glyoxalization. The stress and strain at failure are, however, reduced after glyoxalization. However, the wet mechanical properties of the BC networks are improved by glyoxalization. Raman spectroscopy is used to demonstrate that the stress-transfer efficiency of deformed dry and wet glyoxalized BC networks is significantly increased compared to unmodified material. This enhanced stress-transfer within the networks is shown to be a consequence of the covalent coupling induced during glyoxalization and offers a facile route for enhancing the mechanical properties of BC networks for a variety of applications.


Assuntos
Celulose/química , Gluconacetobacter xylinus/química , Glioxal/química , Celulose/metabolismo , Módulo de Elasticidade , Glioxal/metabolismo , Concentração de Íons de Hidrogênio , Estresse Mecânico , Termogravimetria , Difração de Raios X
8.
ACS Appl Mater Interfaces ; 2(1): 321-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20356252

RESUMO

Understanding the nature of the interface between nanofibers and polymer resins in composite materials is challenging because of the complexity of interactions that may occur between fibers and between the matrix and the fibers. The ability to select the most efficient amount of reinforcement for stress transfer, making a saving on both cost and weight, is also a key part of composite design. The use of Raman spectroscopy to investigate micromechanical properties of laminated bacterial cellulose (BC)/poly(l-lactic) acid (PLLA) resin composites is reported for the first time as a means for understanding the fundamental stress-transfer processes in these composites, but also as a tool to select appropriate processing and volume fraction of the reinforcing fibers. Two forms of BC networks are investigated, namely, one cultured for 3 days and another for 6 days. The mechanical properties of the latter were found to be higher than the former in terms of Young's modulus, stress at failure, and work of fracture. However, their specific Young's moduli (divided by density) were found to be similar. Young's modulus and stress at failure of transparent predominantly amorphous PLLA films were found to increase by 100 and 315%, respectively, for an 18% volume fraction of BC fibers. BC networks cultured for 3 days were shown to exhibit enhanced interaction with PLLA because of their higher total surface area compared, as measured by nitrogen adsorption, to the material cultured for 6 days. This enhanced interaction is confirmed by using the Raman spectroscopic approach, whereby larger band shift rates, of a peak initially located at 1095 cm(-1), with respect to both strain and stress, are observed, which is a quantitative measure of enhanced stress transfer. Thermal analysis (differential scanning calorimetry) and electron microscopy imaging (scanning electron microscopy) of the samples also confirms the enhanced coupling between the resin and the BC networks cultured for 3 days, compared to those cultured for 6 days. These results are shown to have implications for the use of BC networks for composite reinforcement, whereby less material can be used for the same specific mechanical properties. The technique also gives opportunities to study the interfaces in these composite materials in detail.


Assuntos
Bactérias , Celulose , Ácido Láctico , Teste de Materiais , Polímeros , Poliésteres , Estresse Mecânico
9.
Biomacromolecules ; 8(6): 1973-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17458936

RESUMO

Bacterial cellulose (BC) nanofibers were acetylated to enhance the properties of optically transparent composites of acrylic resin reinforced with the nanofibers. A series of BC nanofibers acetylated from degree-of-substitution (DS) 0 to 1.76 were obtained. X-ray diffraction profiles indicated that acetylation proceeded from the surface to the core of BC nanofibers, and scanning electron microscopy images showed that the volume of nanofibers increases by the bulky acetyl group. Since acetylation decreased the refractive index of cellulose, regular transmittance of composites comprised of 63% BC nanofiber was improved, and deterioration at 580 nm because of fiber reinforcement was suppressed to only 3.4%. Acetylation of nanofibers changed their surface properties and reduced the moisture content of the composite to about one-third that of untreated composite, although excessive acetylation increased hygroscopicity. Furthermore, acetylation was found to reduce the coefficient of thermal expansion of a BC sheet from 3 x 10(-6) to below 1 x 10(-6) 1/K.


Assuntos
Proteínas de Bactérias/química , Celulose/química , Nanopartículas/química , Acetilação , Resinas Acrílicas/química , Temperatura Alta , Luz , Teste de Materiais , Microscopia Eletrônica de Varredura , Óptica e Fotônica , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA