Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(2): 1100-1108, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30557499

RESUMO

Cells use membrane proteins as gatekeepers to transport ions and molecules, catalyze reactions, relay signals, and interact with other cells. DNA nanostructures with lipidic anchors are promising as membrane protein mimics because of their high tunability. However, the design features specifying DNA nanostructures' functions in lipid membranes are yet to be fully understood. Here, we show that altering patterns of cholesterol units on a cubic DNA scaffold dramatically changes its interaction mode with lipid membranes. This results in simple design rules that allow a single DNA nanostructure to reproduce multiple membrane protein functions: peripheral anchoring, nanopore behavior, and conformational switching to reveal membrane-binding units. Strikingly, the DNA-cholesterol cubes constitute the first open-walled DNA nanopores, as only a quarter of their wall is made of DNA. This functional diversity can increase our fundamental understanding of membrane phenomena and result in sensing, drug delivery, and cell manipulation tools.


Assuntos
Materiais Biomiméticos/metabolismo , Colesterol/metabolismo , DNA/metabolismo , Nanoporos , Lipossomas Unilamelares/metabolismo , Materiais Biomiméticos/química , Colesterol/química , DNA/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Lipossomas Unilamelares/química
2.
Nat Protoc ; 16(1): 86-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349702

RESUMO

DNA nanopores are bio-inspired nanostructures that control molecular transport across lipid bilayer membranes. Researchers can readily engineer the structure and function of DNA nanopores to synergistically combine the strengths of DNA nanotechnology and nanopores. The pores can be harnessed in a wide range of areas, including biosensing, single-molecule chemistry, and single-molecule biophysics, as well as in cell biology and synthetic biology. Here, we provide a protocol for the rational design of nanobarrel-like DNA pores and larger DNA origami nanopores for targeted applications. We discuss strategies for the pores' chemical modification with lipid anchors to enable them to be inserted into membranes such as small unilamellar vesicles (SUVs) and planar lipid bilayers. The procedure covers the self-assembly of DNA nanopores via thermal annealing, their characterization using gel electrophoresis, purification, and direct visualization with transmission electron microscopy and atomic force microscopy. We also describe a gel assay to determine pore-membrane binding and discuss how to use single-channel current recordings and dye flux assays to confirm transport through the pores. We expect this protocol to take approximately 1 week to complete for DNA nanobarrel pores and 2-3 weeks for DNA origami pores.


Assuntos
DNA/química , Bicamadas Lipídicas/química , Nanoporos , Nanotecnologia/métodos , Lipossomas Unilamelares/química , Nanoporos/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA