Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 19(15): 4869-75, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23436433

RESUMO

Poor aqueous solubility and the unpleasant taste of aripiprazole (APZ) have been recurring problems, owing to its low bioavailability and low patient tolerance, respectively. Herein, we prepared a nanohybrid system that was based on a bentonite clay material, montmorillonite (MMT), which could both mask the taste and enhance the solubility of APZ (i.e., APZ-MMT). To further improve the efficacy of this taste masking and drug solubility, APZ-MMT was also coated with a cationic polymer, polyvinylacetal diethylamino acetate (AEA). In vitro dissolution tests at neutral pH showed that the amount of drug that was released from the AEA-coated APZ-MMT was greatly suppressed (<1%) for the first 3 min, thus suggesting that AEA-coated APZ-MMT has strong potential for the taste masking of APZ. Notably, in simulated gastric juice at pH 1.2, the total percentage of APZ that was released within the first 2 h increased up to 95% for AEA-coated APZ-MMT. Furthermore, this in vitro release profile was also similar to that of Abilify®, a commercially available medication. In vivo experiments by using Sprague-Dawley rats were also performed to compare the pharmacokinetics of AEA-coated APZ-MMT and Abilify®. AEA-coated APZ-MMT exhibited about 20% higher systemic exposure of APZ and its metabolite, dehydro-APZ, compared with Abilify®. Therefore, a new MMT-based nanovehicle, which is coated with a cationic polymer, can act as a promising delivery system for both taste masking and for enhancing the bioavailability of APZ.


Assuntos
Bentonita/farmacologia , Piperazinas/farmacologia , Quinolonas/farmacologia , Animais , Aripiprazol , Bentonita/química , Bentonita/farmacocinética , Disponibilidade Biológica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Nanoestruturas , Piperazinas/química , Piperazinas/farmacocinética , Polímeros/química , Quinolonas/química , Quinolonas/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade , Paladar
2.
Int J Nanomedicine ; 7: 1635-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619517

RESUMO

A nanohybrid was prepared with an inorganic clay material, montmorillonite (MMT), for taste masking of sildenafil (SDN). To further improve the taste-masking efficiency and enhance the drug-release rate, we coated the nanohybrid of SDN-MMT with a basic polymer, polyvinylacetal diethylaminoacetate (AEA). Powder X-ray diffraction and Fourier transform infrared experiments showed that SDN was successfully intercalated into the interlayer space of MMT. The AEA-coated SDN-MMT nanohybrid showed drug release was much suppressed at neutral pH (release rate, 4.70 ± 0.53%), suggesting a potential for drug taste masking at the buccal cavity. We also performed in vitro drug release experiments in a simulated gastric fluid (pH = 1.2) and compared the drug-release profiles of AEA-coated SDN-MMT and Viagra(®), an approved dosage form of SDN. As a result, about 90% of SDN was released from the AEA-coated SDN-MMT during the first 2 hours while almost 100% of drug was released from Viagra(®). However, an in vivo experiment showed that the AEA-coated SDN-MMT exhibited higher drug exposure than Viagra(®). For the AEA-coated SDN-MMT, the area under the plasma concentration- time curve from 0 hours to infinity (AUC(0-∞)) and maximum concentration (C(max)) were 78.8 ± 2.32 µg · hour/mL and 12.4 ± 0.673 µg/mL, respectively, both of which were larger than those obtained with Viagra(®) (AUC(0-∞) = 69.2 ± 3.19 µg · hour/mL; C(max) = 10.5 ± 0.641 µg/mL). Therefore, we concluded that the MMT-based nanohybrid is a promising delivery system for taste masking of SDN with possibly improved drug exposure.


Assuntos
Nanoconjugados/administração & dosagem , Piperazinas/administração & dosagem , Sulfonas/administração & dosagem , Paladar , Administração Oral , Animais , Bentonita/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Cães , Portadores de Fármacos/química , Estabilidade de Medicamentos , Masculino , Nanoconjugados/química , Nanomedicina , Piperazinas/sangue , Piperazinas/farmacocinética , Polivinil/química , Difração de Pó , Purinas/administração & dosagem , Purinas/sangue , Purinas/farmacocinética , Citrato de Sildenafila , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfonas/sangue , Sulfonas/farmacocinética
3.
Int J Pharm ; 402(1-2): 117-22, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20933070

RESUMO

Delivery of poorly soluble drugs has been problematic due to its low absorption profile and bioavailability. In this work, ursodeoxycholic acid (UDCA), a poorly-soluble drug, was intercalated into inorganic nanovehicle, layered double hydroxides (LDHs), with a molecular level to enhance its solubility in biological fluid. The UDCA-loaded nanovehicle (i.e., UDCA-LDHs) was also coated with an anionic polymer, Eudragit(®) S100, to increase the dissolution rate of UDCA. According to the powder X-ray diffraction (PXRD) patterns of UDCA-LDHs, the gallery height of LDHs was expanded from 3.6Å to 28.3Å, indicating that the UDCA molecules were successfully intercalated into the interlayer space of LDHs. Fourier transform infrared (FT-IR) spectra also revealed that the UDCA molecules were well stabilized in the LDHs through electrostatic interaction. The in vitro dissolution test in a simulated biological fluid (pH=6.8) showed that the total dissolved fraction of UDCA for the first 2h was about 60.2% for the Eudragit(®) S100 coated UDCA-LDHs, which was a dramatic increase as compared with 19.0% dissolution from intact UDCA. It is, therefore, concluded that LDHs nanovehicle coated with an anionic polymer is a promising delivery system for improving aqueous solubility of poorly soluble drugs.


Assuntos
Colagogos e Coleréticos/administração & dosagem , Portadores de Fármacos/química , Hidróxidos/química , Ácidos Polimetacrílicos/química , Ácido Ursodesoxicólico/administração & dosagem , Colagogos e Coleréticos/química , Estabilidade de Medicamentos , Excipientes/química , Difração de Pó/métodos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fatores de Tempo , Ácido Ursodesoxicólico/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA