Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 71(18): 5469-5483, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32474603

RESUMO

The function of the transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is still unclear since it appears to be either a negative or a positive regulator for secondary cell wall deposition with its loss-of-function mutant displaying thicker interfascicular and xylary fiber cell walls but thinner vessel cell walls in inflorescence stems. To explore the exact function of KNAT7, class II KNOTTED1-LIKE HOMEOBOX (KNOX II) genes in Arabidopsis including KNAT3, KNAT4, and KNAT5 were studied together. By chimeric repressor technology, we found that both KNAT3 and KNAT7 repressors exhibited a similar dwarf phenotype. Both KNAT3 and KNAT7 genes were expressed in the inflorescence stems and the knat3 knat7 double mutant exhibited a dwarf phenotype similar to the repressor lines. A stem cross-section of knat3 knat7 displayed an enhanced irregular xylem phenotype as compared with the single mutants, and its cell wall thickness in xylem vessels and interfascicular fibers was significantly reduced. Analysis of cell wall chemical composition revealed that syringyl lignin was significantly decreased while guaiacyl lignin was increased in the knat3 knat7 double mutant. Coincidently, the knat3 knat7 transcriptome showed that most lignin pathway genes were activated, whereas the syringyl lignin-related gene Ferulate 5-Hydroxylase (F5H) was down-regulated. Protein interaction analysis revealed that KNAT3 and KNAT7 can form a heterodimer, and KNAT3, but not KNAT7, can interact with the key secondary cell wall formation transcription factors NST1/2, which suggests that the KNAT3-NST1/2 heterodimer complex regulates F5H to promote syringyl lignin synthesis. These results indicate that KNAT3 and KNAT7 synergistically work together to promote secondary cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lignina , Proteínas Nucleares , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
2.
J Biotechnol ; 142(3-4): 279-84, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19497342

RESUMO

Bioethanol might be produced more economically and with less ecological impact (with reduced exploitation of food crops) if we could increase the production of glucose from the cellulosic materials in plant cell walls. However, plant cell walls are relatively resistant to enzymatic and physicochemical hydrolysis and, therefore, it is necessary to develop methods for reducing such resistance. Changes in plant cell wall materials, by genetic engineering, that render them more easily hydrolyzable to glucose might be a valuable approach to this problem. We showed previously that, in Arabidopsis, NAC secondary wall thickening-promoting factor1 (NST1) and NST3 are key regulators of secondary wall formation. We report here that transgenic Arabidopsis plants that expressed a chimeric repressor derived from NST1 produced cell wall materials that were twice as susceptible to both enzymatic and physicochemical hydrolysis as those from wild-type plants. The yields of glucose from both fresh and dry biomass were increased in the chimeric repressor lines. Use of the NST1 chimeric repressor might enhance production of glucose from plant cell walls, by changing the nature of the cell walls themselves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucose/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fontes de Energia Bioelétrica , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulase/metabolismo , Glucanos/análise , Hidrólise , Lignina/análise , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Uridina Difosfato Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA