Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biomacromolecules ; 24(3): 1310-1317, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36763594

RESUMO

Mucus lines all surfaces of the human body not covered by skin and provides lubrication, hydration, and protection. The properties of mucus are influenced by changes in pH that may occur due to physiological conditions and pathological circumstances. Reinforcing the mucus barrier with biopolymers that can adhere to mucus in different conditions can be a useful strategy for protecting the underlying mucosae from damage. In this work, regenerated silk fibroin (silk) was chemically modified with phenyl boronic acid to form reversible covalent complexes with the 1,2- or 1,3-diols. The silk modified with boronic acid pendant groups has an increased affinity for mucins, whose carbohydrate component is rich in diols. These results offer new applications of silk in mucoadhesion, and the ability to bind diols to the silk lays the foundation for the development of silk-based sugar-sensing platforms.


Assuntos
Fibroínas , Humanos , Fibroínas/química , Seda/química , Biopolímeros , Concentração de Íons de Hidrogênio , Ácidos Borônicos
2.
Proc Natl Acad Sci U S A ; 117(25): 14602-14608, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522869

RESUMO

Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk-elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Biônica/métodos , Celulose/química , Elastina/química , Elastina/genética , Hidrogéis/química , Conformação Molecular , Nanofibras/química , Engenharia de Proteínas , Robótica/métodos , Seda/química , Seda/genética
3.
Proc Natl Acad Sci U S A ; 116(43): 21361-21368, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591247

RESUMO

Protein micro/nanopatterning has long provided sophisticated strategies for a wide range of applications including biointerfaces, tissue engineering, optics/photonics, and bioelectronics. We present here the use of regenerated silk fibroin to explore wrinkle formation by exploiting the structure-function relation of silk. This yields a biopolymer-based reversible, multiresponsive, dynamic wrinkling system based on the protein's responsiveness to external stimuli that allows on-demand tuning of surface morphologies and properties. The polymorphic transitions of silk fibroin enable modulation of the wrinkle patterns and, consequently, the material's physical properties. The interplay between silk protein chains and external stimuli enables control over the protein film's wrinkling dynamics. Thanks to the versatility of regenerated silk fibroin as a technological substrate, a number of demonstrator devices of varying utility are shown ranging from information encoding to modulation of optical transparency and thermal regulation.


Assuntos
Fibroínas/química , Seda/química , Animais , Materiais Biocompatíveis/química , Bombyx , Teste de Materiais , Engenharia Tecidual/instrumentação
4.
Proc Natl Acad Sci U S A ; 114(3): 451-456, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28028213

RESUMO

We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats.


Assuntos
Seda/química , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Bombyx , Microscopia Crioeletrônica , Fibroínas/química , Hidrogéis , Teste de Materiais , Nanoestruturas/química , Nanotecnologia , Transição de Fase , Água
5.
Nano Lett ; 19(4): 2620-2626, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30908917

RESUMO

Nanoscale field-effect transistors (FETs) represent a unique platform for real time, label-free transduction of biochemical signals with unprecedented sensitivity and spatiotemporal resolution, yet their translation toward practical biomedical applications remains challenging. Herein, we demonstrate the potential to overcome several key limitations of traditional FET sensors by exploiting bioactive hydrogels as the gate material. Spatially defined photopolymerization is utilized to achieve selective patterning of polyethylene glycol on top of individual graphene FET devices, through which multiple biospecific receptors can be independently encapsulated into the hydrogel gate. The hydrogel-mediated integration of penicillinase was demonstrated to effectively catalyze enzymatic reaction in the confined microenvironment, enabling real time, label-free detection of penicillin down to 0.2 mM. Multiplexed functionalization with penicillinase and acetylcholinesterase has been demonstrated to achieve highly specific sensing. In addition, the microenvironment created by the hydrogel gate has been shown to significantly reduce the nonspecific binding of nontarget molecules to graphene channels as well as preserve the encapsulated enzyme activity for at least one week, in comparison to free enzymes showing significant signal loss within one day. This general approach presents a new biointegration strategy and facilitates multiplex detection of bioanalytes on the same platform, which could underwrite new advances in healthcare research.


Assuntos
Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Penicilinase/química , Penicilinas/isolamento & purificação , Pesquisa Biomédica/tendências , Grafite/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Penicilinas/química , Polietilenoglicóis/química , Transistores Eletrônicos
6.
Chem Soc Rev ; 47(17): 6486-6504, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29938722

RESUMO

Silks are natural fibrous protein polymers that are spun by silkworms and spiders. Among silk variants, there has been increasing interest devoted to the silkworm silk of B. mori, due to its availability in large quantities along with its unique material properties. Silk fibroin can be extracted from the cocoons of the B. mori silkworm and combined synergistically with other biomaterials to form biopolymer composites. With the development of recombinant DNA technology, silks can also be rationally designed and synthesized via genetic control. Silk proteins can be processed in aqueous environments into various material formats including films, sponges, electrospun mats and hydrogels. The versatility and sustainability of silk-based materials provides an impressive toolbox for tailoring materials to meet specific applications via eco-friendly approaches. Historically, silkworm silk has been used by the textile industry for thousands of years due to its excellent physical properties, such as lightweight, high mechanical strength, flexibility, and luster. Recently, due to these properties, along with its biocompatibility, biodegradability and non-immunogenicity, silkworm silk has become a candidate for biomedical utility. Further, the FDA has approved silk medical devices for sutures and as a support structure during reconstructive surgery. With increasing needs for implantable and degradable devices, silkworm silk has attracted interest for electronics, photonics for implantable yet degradable medical devices, along with a broader range of utility in different device applications. This Tutorial review summarizes and highlights recent advances in the use of silk-based materials in bio-nanotechnology, with a focus on the fabrication and functionalization methods for in vitro and in vivo applications in the field of tissue engineering, degradable devices and controlled release systems.


Assuntos
Materiais Biocompatíveis/química , Bioengenharia/métodos , Bombyx/química , Nanoestruturas/química , Nanotecnologia/métodos , Seda/química , Animais , Materiais Biocompatíveis/metabolismo , Bioengenharia/instrumentação , Bombyx/genética , Bombyx/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Engenharia Genética/instrumentação , Engenharia Genética/métodos , Humanos , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Seda/genética , Seda/metabolismo , Seda/ultraestrutura , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
7.
Proc Natl Acad Sci U S A ; 112(39): 12052-7, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26374842

RESUMO

Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light-matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Lasers , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Biopolymers ; 107(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28555880

RESUMO

Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications.


Assuntos
Elastômeros/química , Elastômeros/síntese química , Hidrogéis/química , Hidrogéis/síntese química , Seda/química , Animais , Bombyx
9.
Proc Natl Acad Sci U S A ; 111(49): 17385-9, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422476

RESUMO

A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.


Assuntos
Anti-Infecciosos/administração & dosagem , Seda/química , Implantes Absorvíveis , Animais , Infecções Bacterianas/prevenção & controle , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Eletrônica , Desenho de Equipamento , Equipamentos e Provisões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ondas de Rádio , Infecções Estafilocócicas , Staphylococcus aureus , Temperatura , Termodinâmica , Tecnologia sem Fio
10.
Proc Natl Acad Sci U S A ; 109(48): 19584-9, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150544

RESUMO

Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue.


Assuntos
Materiais Biocompatíveis , Óptica e Fotônica , Próteses e Implantes , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura
11.
Proc Natl Acad Sci U S A ; 109(49): 19910-5, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23150574

RESUMO

Curved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, nonconstraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation.


Assuntos
Materiais Biocompatíveis , Eletrônica Médica/instrumentação , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Coração/fisiologia , Pericárdio/anatomia & histologia , Próteses e Implantes , Animais , Catéteres , Eletrônica Médica/métodos , Desenho de Equipamento/métodos , Coração/anatomia & histologia , Teste de Materiais , Nanotecnologia/métodos , Coelhos , Semicondutores , Seda , Temperatura
12.
ACS Biomater Sci Eng ; 10(8): 5390-5398, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991039

RESUMO

Within the context of seeking eco-friendly and readily available materials for energy storage, there is a pressing demand for energy storage solutions that employ environmentally sustainable, high-performance, and adaptable constituents. Specifically, such materials are essential for use in wearable technology, smart sensors, and implantable medical devices, whereas, more broadly, their use plays a pivotal role in shaping their efficiency and ecological footprint. Here, we demonstrate an entirely biopolymer-based supercapacitor with a remarkable performance, achieving a capacitance greater than 0.2 F cm-2 at a charge-discharge current of 10 mA cm-2 with 94% capacitance retention after 20,000 cycles. The supercapacitor is composed of three distinct silk fibroin (SF) composite materials, namely, photo-cross-linkable SF (Sil-MA) hydrogel, SF-polydopamine (SF-PDA), and SF bioplastic, to create a gel electrolyte, electrode binder, and encapsulation, respectively. Together, these elements form a mechanically and electrochemically robust skeleton for biofriendly energy storage devices. Moreover, these biomaterial-based supercapacitor devices show stretchability, flexibility, and compressibility while maintaining their electrochemical performance. The biomaterials and fabrication techniques presented can serve as a foundation for investigating various aqueous electrochemical energy storage systems, especially for emerging applications in wearable electronics and environmentally friendly material systems.


Assuntos
Capacitância Elétrica , Fibroínas , Hidrogéis , Fibroínas/química , Hidrogéis/química , Polímeros/química , Dispositivos Eletrônicos Vestíveis , Materiais Biocompatíveis/química , Bombyx/química , Eletrodos , Indóis
13.
Small ; 9(20): 3398-404, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23606533

RESUMO

The combined use of ZnO, Mg, MgO, and silk provides routes to classes of thin-film transistors and mechanical energy harvesters that are soluble in water and biofluids. Experimental and theoretical studies of the operational aspects and dissolution properties of this type of transient electronics technology illustrate its various capabilities. Application opportunities range from resorbable biomedical implants, to environmentally dissolvable sensors, and degradable consumer electronics.


Assuntos
Materiais Biocompatíveis/química , Eletrônica/instrumentação , Fontes Geradoras de Energia , Óxido de Zinco/química , Eletricidade , Cinética , Solubilidade , Transistores Eletrônicos , Água/química
14.
Small ; 9(21): 3704-13, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-23653252

RESUMO

Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, the fabrication of dense microneedle arrays from silk with different drug release kinetics is reported. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles, to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs are delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Seda/química , Administração Cutânea , Materiais Biocompatíveis , Cadáver , Humanos , Microscopia Eletrônica de Varredura , Agulhas , Pele/metabolismo
15.
Biomacromolecules ; 14(7): 2189-95, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23781981

RESUMO

The recent increase in the development of polymer-based technological devices has necessitated a surge in associated fabrication strategies. An adequate understanding of the interfacial properties in such systems is required to meet the challenges inherent to these applications, ranging from electronics to biomedicine. In this work, we utilize thermal reflow to investigate the interfacial properties of multilayer silk fibroin film constructs. We demonstrate that reflow can be utilized to control the water content, glass transition, and ß sheet crystallinity of such constructs, leading to control of the mechanical properties at the interface. Such analysis may lend insight into the interfacial properties of similar semicrystalline biopolymers, increasing the number of fabrication options for the development of devices at the biological-technological nexus.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Fibroínas/química , Teste de Materiais , Propriedades de Superfície , Água/química
16.
Adv Mater ; 35(45): e2302062, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640508

RESUMO

In recent years, increased control over naturally derived structural protein formulations and their self-assembly has enabled the application of high-resolution manufacturing techniques to silk-based materials, leading to bioactive interfaces with unprecedented miniaturized formats and functionalities. Here, a hybrid biopolymer-semiconductor device, obtained by integrating nanoscale silk layers in a well-established class of inorganic field-effect transistors (silk-FETs), is presented. The devices offer two distinct modes of operation-either traditional field-effect or electrolyte-gated-enabled by the precisely controlled thickness, morphology, and biochemistry of the integrated silk layers. The different operational modes are selectively accessed by dynamically modulating the free-water content within the nanoscale protein layer from the vapor phase. The utility of these hybrid devices is illustrated in a highly sensitive and ultrafast breath sensor, highlighting the opportunities offered by the integration of nanoscale biomaterial interfaces in conjunction with traditional semiconductor devices, enabling functional outcomes at the intersection between the worlds of microelectronics and biology.


Assuntos
Fibroínas , Fibroínas/química , Seda/química , Materiais Biocompatíveis
17.
Small ; 8(18): 2812-8, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22744861

RESUMO

Strategies are presented to achieve bendable and stretchable systems of microscale inorganic light-emitting diodes with wireless powering schemes, suitable for use in implantable devices. The results include materials strategies, together with studies of the mechanical, electronic, thermal and radio frequency behaviors both in vitro and in in-vivo animal experiments.


Assuntos
Próteses e Implantes , Animais , Eletrônica , Resinas Epóxi , Desenho de Equipamento/instrumentação , Feminino , Luz , Camundongos , Camundongos Endogâmicos BALB C , Polimetil Metacrilato , Dióxido de Silício , Titânio
18.
Nat Mater ; 9(6): 511-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400953

RESUMO

Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.


Assuntos
Eletrônica/métodos , Fibroínas , Seda , Animais , Ação Capilar , Gatos , Eletrodos , Eletrônica/instrumentação , Microscopia Confocal/métodos , Modelos Animais , Polimetil Metacrilato , Próteses e Implantes , Solubilidade , Estresse Mecânico , Instrumentos Cirúrgicos
19.
ACS Biomater Sci Eng ; 7(12): 5451-5473, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34818885

RESUMO

The use of saliva as a diagnostic biofluid has been increasing in recent years, thanks to the identification and validation of new biomarkers and improvements in test accuracy, sensitivity, and precision that enable the development of new noninvasive and cost-effective devices. However, the lack of standardized methods for sample collection, treatment, and storage contribute to the overall variability and lack of reproducibility across analytical evaluations. Furthermore, the instability of salivary biomarkers after sample collection hinders their translation into commercially available technologies for noninvasive monitoring of saliva in home settings. The present review aims to highlight the status of research on the challenges of collecting and using diagnostic salivary samples, emphasizing the methodologies used to preserve relevant proteins, hormones, genomic, and transcriptomic biomarkers during sample handling and analysis.


Assuntos
Saliva , Biomarcadores , Reprodutibilidade dos Testes
20.
Adv Sci (Weinh) ; 8(16): e2004786, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34080324

RESUMO

The exceptional underwater adhesive properties displayed by aquatic organisms, such as mussels (Mytilus spp.) and barnacles (Cirripedia spp.) have long inspired new approaches to adhesives with a superior performance both in wet and dry environments. Herein, a bioinspired adhesive composite that combines both adhesion mechanisms of mussels and barnacles through a blend of silk, polydopamine, and Fe3+ ions in an entirely organic, nontoxic water-based formulation is presented. This approach seeks to recapitulate the two distinct mechanisms that underpin the adhesion properties of the Mytilus and Cirripedia, with the former secreting sticky proteinaceous filaments called byssus while the latter produces a strong proteic cement to ensure anchoring. The composite shows remarkable adhesive properties both in dry and wet conditions, favorably comparing to synthetic commercial glues and other adhesives based on natural polymers, with performance comparable to the best underwater adhesives with the additional advantage of having an entirely biological composition that requires no synthetic procedures or processing.


Assuntos
Adesivos/química , Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Animais , Bivalves/química , Thoracica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA