Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983008

RESUMO

Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.


Assuntos
Ácido Hialurônico , Periodontite , Humanos , Ácido Hialurônico/farmacologia , Engenharia Tecidual , Oxigênio , Porphyromonas gingivalis , Periodontite/terapia , Periodontite/microbiologia
2.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742876

RESUMO

The biocompatibility of carrier nanomaterials in blood is largely hampered by their activating or inhibiting role on the clotting system, which in many cases prevents safe intravascular application. Here, we characterized an aqueous colloidal ethyl hydroxyethyl cellulose (EHEC) solution and tested its effect on ex vivo clot formation, platelet aggregation, and activation by thromboelastometry, aggregometry, and flow cytometry. We compared the impact of EHEC solution on platelet aggregation with biocompatible materials used in transfusion medicine (the plasma expanders gelatin polysuccinate and hydroxyethyl starch). We demonstrate that the EHEC solution, in contrast to commercial products exhibiting Newtonian flow behavior, resembles the shear-thinning behavior of human blood. Similar to established nanomaterials that are considered biocompatible when added to blood, the EHEC exposure of resting platelets in platelet-rich plasma does not enhance tissue thromboplastin- or ellagic acid-induced blood clotting, or platelet aggregation or activation, as measured by integrin αIIbß3 activation and P-selectin exposure. Furthermore, the addition of EHEC solution to adenosine diphosphate (ADP)-stimulated platelet-rich plasma does not affect the platelet aggregation induced by this agonist. Overall, our results suggest that EHEC may be suitable as a biocompatible carrier material in blood circulation and for applications in flow-dependent diagnostics.


Assuntos
Agregação Plaquetária , Polímeros , Difosfato de Adenosina/farmacologia , Plaquetas , Celulose/farmacologia , Humanos , Testes de Função Plaquetária/métodos , Polímeros/farmacologia
3.
Nat Prod Rep ; 37(3): 380-424, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31625546

RESUMO

Covering: up to mid-2019 This review highlights the utilization of biomass-derived building blocks in the total synthesis of natural products. An overview over several renewable feedstock classes, namely wood/lignin, cellulose, chitin and chitosan, fats and oils, as well as terpenes, is given, covering the time span from the initial beginning of natural product synthesis until today. The focus is put on the origin of the employed carbon atoms and on the nature of the complex structures that were assembled therefrom. The emerging trend of turning away from petrochemically derived starting materials back to bio-based resources, just as seen in the early days of total synthesis, shall be demonstrated.


Assuntos
Produtos Biológicos/síntese química , Madeira/química , Biomassa , Carbono/química , Celulose/química , Quitina/química , Quitosana/química , Química Verde , Lignina/química , Óleos/química , Terpenos/química
4.
Chem Soc Rev ; 44(22): 8301-25, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278884

RESUMO

The specific targeting of either tumor cells or immune cells in vivo by carefully designed and appropriately surface-functionalized nanocarriers may become an effective therapeutic treatment for a variety of diseases. Carbohydrates, which are prominent biomolecules, have shown their outstanding ability in balancing the biocompatibility, stability, biodegradability, and functionality of nanocarriers. The recent applications of sugar (mono/oligosaccharides and/or polysaccharides) for the development of nanomedicines are summarized in this review, including the application of carbohydrates for the surface-functionalization of various nanocarriers and for the construction of the nanocarrier itself. Current problems and challenges are also addressed.


Assuntos
Pesquisa Biomédica , Carboidratos/química , Nanoestruturas/química , Animais , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Humanos , Propriedades de Superfície
5.
Angew Chem Int Ed Engl ; 54(25): 7436-40, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25940402

RESUMO

Whenever nanoparticles encounter biological fluids like blood, proteins adsorb on their surface and form a so-called protein corona. Although its importance is widely accepted, information on the influence of surface functionalization of nanocarriers on the protein corona is still sparse, especially concerning how the functionalization of PEGylated nanocarriers with targeting agents will affect protein corona formation and how the protein corona may in turn influence the targeting effect. Herein, hydroxyethyl starch nanocarriers (HES-NCs) were prepared, PEGylated, and modified on the outer PEG layer with mannose to target dendritic cells (DCs). Their interaction with human plasma was then studied. Low overall protein adsorption with a distinct protein pattern and high specific affinity for DC binding were observed, thus indicating an efficient combination of "stealth" and targeting behavior.


Assuntos
Células Dendríticas/metabolismo , Portadores de Fármacos/metabolismo , Manose/metabolismo , Nanopartículas/metabolismo , Coroa de Proteína/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Derivados de Hidroxietil Amido/química , Derivados de Hidroxietil Amido/metabolismo , Manose/química , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo
6.
Antibiotics (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37370309

RESUMO

Periodontitis is a common global disease caused by bacterial dysbiosis leading to tissue destruction, and it is strongly associated with anaerobic bacterial colonization. Therapeutic strategies such as oxygen therapy have been developed to positively influence the dysbiotic microbiota, and the use of oxygen-releasing substances may offer an added benefit of avoiding systemic effects commonly associated with antibiotics taken orally or hyperbaric oxygen therapy. Therefore, the oxygen release of calcium peroxide (CaO2) was measured using a dissolved oxygen meter, and CaO2 solutions were prepared by dissolving autoclaved CaO2 in sterile filtered and deionized water. The effects of CaO2 on planktonic bacterial growth and metabolic activity, as well as on biofilms of Streptococcus oralis and Porphyromonas gingivalis, were investigated through experiments conducted under anaerobic conditions. The objective of this study was to investigate the potential of CaO2 as an antimicrobial agent for the treatment of periodontitis. Results showed that CaO2 selectively inhibited the growth and viability of P. gingivalis (p < 0.001) but had little effect on S. oralis (p < 0.01), indicating that CaO2 has the potential to selectively affect both planktonic bacteria and mono-species biofilms of P. gingivalis. The results of this study suggest that CaO2 could be a promising antimicrobial agent with selective activity for the treatment of periodontitis.

7.
Microorganisms ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35630409

RESUMO

Periodontitis and peri-implantitis are inflammatory conditions with a high global prevalence. Oral pathogens such as Porphyromonas gingivalis play a crucial role in the development of dysbiotic biofilms associated with both diseases. The aim of our study was to identify plant-derived substances which mainly inhibit the growth of "disease promoting bacteria", by comparing the effect of Rheum palmatum root extract against P. gingivalis and the commensal species Streptococcus oralis. Antiplanktonic activity was determined by measuring optical density and metabolic activity. Antibiofilm activity was quantified using metabolic activity assays and live/dead fluorescence staining combined with confocal laser scanning microscopy. At concentrations of 3.9 mg/L, R. palmatum root extract selectively inhibited planktonic growth of the oral pathogen P. gingivalis, while not inhibiting growth of S. oralis. Selective effects also occurred in mature biofilms, as P. gingivalis was significantly more stressed and inhibited than S. oralis. Our studies show that low concentrations of R. palmatum root extract specifically inhibit P. gingivalis growth, and offer a promising approach for the development of a potential topical agent to prevent alterations in the microbiome due to overgrowth of pathogenic P. gingivalis.

8.
Antibiotics (Basel) ; 11(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35203789

RESUMO

Novel plant-derived antimicrobials are of interest in dentistry, especially in the treatment of periodontitis, since the use of established substances is associated with side effects and concerns of antimicrobial resistance have been raised. Thus, the present study was performed to quantify the antimicrobial efficacy of crude plant extracts against Porphyromonas gingivalis, a pathogen associated with periodontitis. The minimal inhibitory concentrations (MICs) of Eucalyptus globulus leaf, Azadirachta indica leaf, Glycyrrhiza glabra root and Rheum palmatum root extracts were determined by broth microdilution for P. gingivalis ATCC 33277 according to CLSI (Clinical and Laboratory Standards Institute). The MICs for the E. globulus, A. indica and G. glabra extracts ranged from 64 mg/L to 1024 mg/L. The lowest MIC was determined for an ethanolic R. palmatum extract with 4 mg/L. The MIC for the anthraquinone rhein was also measured, as the antimicrobial activity of P. palmatum root extracts can be partially traced back to rhein. Rhein showed a remarkably low MIC of 0.125 mg/L. However, the major compounds of the R. palmatum root extract were not further separated and purified. In conclusion, R. palmatum root extracts should be further studied for the treatment of periodontitis.

9.
Pharmaceutics ; 14(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297494

RESUMO

Various local and systemic factors compromise oral wound healing and may lead to wound dehiscence, inflammation, or ulcers. Currently, there is a lack of topical therapeutical options. Thus, this study aimed to investigate the effect of Aloe vera (AV) and Rheum palmatum root (RPR) on oral wound healing capacity in vitro. The effect of AV and RPR on human primary fibroblast viability and migration was studied by measuring metabolic activity and gap closure in a scratch assay. Furthermore, cell cycle distribution and cytoskeletal features were analyzed. Antimicrobial activity against the oral pathogen Porphyromonas gingivalis was evaluated by broth microdilution assay. AV and RPR increased fibroblast migration after single agent treatment. Synergistic effects of the plant extract combination were observed regarding cellular migration which were confirmed by calculation of the phenomenological combination index (pCI), whereas the cell cycle distribution was not influenced. Furthermore, the combination of AV and RPR showed synergistic antibacterial effects as determined by the fractional inhibitory concentration index. This study demonstrated that the combination of AV and RPR can promote the migration of human primary fibroblasts in vitro and exert antimicrobial efficacy against P. gingivalis, suggesting these compounds for the topical treatment of wound healing disorders.

10.
Macromol Biosci ; 19(6): e1800481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968573

RESUMO

The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate-co-hymecromone-methacrylate allow the preparation of multifunctionalized core-crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18-MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle-in addition-via a click reaction with the terminal azide. Thereafter, the differently functionalized micelles are chemically and biologically characterized. While the core-crosslinked micelles without carbohydrate units are hardly bound by DCs, mannose and trimannose functionalization lead to a strong binding. Flow cytometric analysis and blocking studies employing mannan suggest the requirement of the mannose receptor and DC-SIGN for effective micelle binding. It could be suppressed by blocking with mannan. Adjuvant-loaded micelles functionalized with mannose and trimannose activate DCs, and DCs preincubated with antigen-conjugated micelles induce proliferation of antigen-specific CD8+ T cells.


Assuntos
Sistemas de Liberação de Medicamentos , Sistema Imunitário/efeitos dos fármacos , Metacrilatos/química , Nanopartículas/química , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Azidas/química , Azidas/farmacologia , Química Click , Células Dendríticas/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Metacrilatos/síntese química , Metacrilatos/farmacologia , Micelas , Ovalbumina/química , Ovalbumina/farmacologia , Tamanho da Partícula , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Polímeros/química , Polímeros/farmacologia
11.
Z Naturforsch C J Biosci ; 63(3-4): 203-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18533462

RESUMO

Five new norhirsutanes, named creolophins A-E, and complicatic acid were isolated from the culture broth of the rare tooth fungus Creolophus cirrhatus by solvent extraction, silica gel column chromatography and HPLC. In addition, neocreolophin, a complex dimerization product, was formed as an artefact during purification. The structures were elucidated by spectroscopic methods and are published in a separate paper. Two of the metabolites showed moderate antibacterial, antifungal and cytotoxic activities.


Assuntos
Agaricales/química , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Sesquiterpenos/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Humanos , Células Jurkat , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia
12.
Curr Biol ; 27(15): R744-R745, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28787599

RESUMO

In their recent paper on the degradation of polyethylene by caterpillars of the wax moth Galleria melonella, Bombelli et al.[1] report various experiments, including microscopic and spectroscopic data which the authors believe support the chemical digestion of the polymers by these insects. While the biodegradation of mostly inert artificial polymers is definitely a very interesting research field, we must respectfully disagree with the methodology and conclusions from this paper.


Assuntos
Mariposas , Animais , Biodegradação Ambiental , Insetos , Polietileno , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA