Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760970

RESUMO

Guided bone regeneration is frequently used to reconstruct the alveolar bone to rehabilitate the mastication using dental implants. The purpose of this article is to research the properties of eggshell membrane (ESM) and its potential application in tissue engineering. The study focuses on the structural, mechanical, and histological characteristics of ESM extracted from Gallus domesticus eggs and to compare them to a commercially available porcine pericardium membrane (Jason® membrane, botiss biomaterials GmbH, Zossen, Germany). Thus, histology was performed on the ESM, and a comparison of the microstructure through scanning electron microscopy and atomic force microscopy (AFM) was conducted. Also, mechanical tensile strength was evaluated. Samples of ESM were prepared and treated with alcohol for fixation and disinfection. Histological analysis revealed that the ESM architecture is constituted out of loose collagen fibers. However, due to the random arrangement of collagen fibers within the membrane, it might not be an effective barrier and occlusive barrier. Comparative analyses were performed between the ESM and the AFM examinations and demonstrated differences in the surface topography and mechanical properties between the two membranes. The ESM exhibited rougher surfaces and weaker mechanical cohesion attributed to its glycoprotein content. The study concludes that while the ESM displays favorable biocompatibility and resorb ability, its non-uniform collagen arrangement limits its suitability as a guided bone regeneration membrane in the current non-crosslinked native form. Crosslinking techniques may enhance its properties for such applications. Further research is needed to explore modifications and processing methods that could leverage the ESM's unique properties for tissue engineering purposes.

2.
J Med Life ; 16(7): 1007-1012, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37900060

RESUMO

Guided bone regeneration (GBR) utilizing eggshell membrane (ESM) as a potential biomaterial for dental implant therapy augmentation was explored in this study. ESM, an environmentally friendly waste product, possesses collagen-rich characteristics. The biocompatibility and histological responses of ESM were investigated in a rat model. Twelve young adult Wistar rats were used in this study. ESM samples were implanted in subcutaneous and intramuscular pockets, and samples were collected at 48 hours, 4 weeks, and 8 weeks post-implantation. Histological analysis revealed the changes in ESM over time. Results showed that ESM maintained its structural integrity, induced a moderate cellular response, and exhibited slow degradation, indicating potential biocompatibility. However, the lack of organized collagen arrangement in ESM led to the formation of irregular and polymorphic spaces, allowing cell migration. Encapsulation of ESM by newly proliferating collagen fibers and multinucleated giant cells was observed at later time points, indicating a foreign body reaction. Crosslinking might improve its performance as a separation membrane, as it has the potential to resist enzymatic degradation and enhance biomechanical properties. In conclusion, ESM demonstrated biocompatibility, slow degradation, and lack of foreign body reaction. While not suitable as a complete separation membrane due to irregular collagen arrangement, further research involving crosslinking could enhance its properties, making it a viable option for guided bone regeneration applications in dental implant therapy. This study highlights the potential of repurposing waste materials for medical purposes and underscores the importance of controlled collagen structure in biomaterial development.


Assuntos
Implantes Dentários , Ratos , Animais , Ratos Wistar , Membranas Artificiais , Casca de Ovo , Colágeno , Regeneração Óssea , Materiais Biocompatíveis , Reação a Corpo Estranho
3.
Biomedicines ; 11(7)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509604

RESUMO

The goal of the current study was to determine the mechanical proprieties of polymethylmethacrylate (PMMA) and the improved compound, the graphene-based PMMA, with Zn and Ag and to compare the results. Scanning electron microscopy analysis of the samples before and after the mechanical test was conducted. The compression behavior, flexural properties, tensile strength, and shape of the samples were all investigated and compared between the variants of PMMA. Commercially available polymethylmethacrylate was used (Orthocryl®-Dentaurum, Ispringen, Germany) with the salt and pepper technique according to the manufacturer's instructions to produce 20 samples for each mechanical trial with standard cylinders (4 mm diameter × 8 mm length) for compression, parallelepipedal prisms for flexing (2 mm × 2 mm × 25 mm) and flat samples for traction. There was no statistical difference in the mechanical proprieties of the samples evaluated, although there were values that could suggest significance. The graphene-based PMMA demonstrated good mechanical proprieties, like the commercially available PMMA, and appears promising for future clinical use based on its multiple advantages.

4.
Biomedicines ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37626652

RESUMO

Dental 3D-printing technologies, including stereolithography (SLA), polyjet (triple-jetting technology), and fusion deposition modeling, have revolutionized the field of orthodontic occlusal splint manufacturing. Three-dimensional printing is now currently used in many dental fields, such as restorative dentistry, prosthodontics, implantology, and orthodontics. This study aimed to assess the mechanical properties of 3D-printed materials and compare them with the conventional polymethylmethacrylate (PMMA). Compression, flexural, and tensile properties were evaluated and compared between PMMA samples (n = 20) created using the "salt and pepper" technique and digitally designed 3D-printed samples (n = 20). The samples were subjected to scanning electron microscope analysis. Statistical analysis revealed that the control material (PMMA) exhibited a significantly higher Young's modulus of compression and tensile strength (p < 0.05). In the flexural tests, the control samples demonstrated superior load at break results (p < 0.05). However, the 3D-printed samples exhibited significantly higher maximum bending stress at maximum load (MPa) (p < 0.05). Young's modulus of tensile testing (MPa) was statistically significant higher for the control samples, while the 3D-printed samples demonstrated significantly higher values for elongation at break (p < 0.05). These findings indicate that 3D-printed materials are a promising alternative that can be effectively utilized in clinical practice, potentially replacing traditional heat-cured resin in various applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36078792

RESUMO

The temporomandibular joint disorder (TMD) is a syndrome that affects the masticatory muscles and temporomandibular joint (TMJ). Its pathophysiology is not yet fully known. Cephalometric analysis is used for routine evaluation regarding orthodontic treatment and other purposes. The aim of this study was to assess if using cephalometric analysis and TMJ conservative therapy to evaluate the hyoid bone position and the cervical posture reduced symptoms in adults with TMDs compared to no intervention. The authors conducted a systematic review of the literature (PubMed, Cochrane, Web of Science, Scopus, and Embase) for clinical studies of TMDs with conservative treatment and lateral cephalometric analysis of the hyoid and cervical posture. To assess the risk of bias for non-randomized clinical trials ROBINS-I tool was used. Out of 137 studies found, 6 remained to be included. Most of them found a link between TMD and lateral cephalometric analysis, but there was a high risk of bias. This review found a possible link between TMDs, the neck and cervical posture. There is a benefit reported regarding the use of the lateral cephalometry as a treatment, but more extensive prospective randomized clinical trials are necessary to be able to draw definitive conclusions.


Assuntos
Osso Hioide , Transtornos da Articulação Temporomandibular , Adulto , Cefalometria , Humanos , Osso Hioide/diagnóstico por imagem , Postura/fisiologia , Estudos Prospectivos , Transtornos da Articulação Temporomandibular/diagnóstico por imagem
6.
J Med Life ; 14(2): 181-197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104241

RESUMO

The present study investigated the capacity of Suprathel® (a copolymer membrane, so far validated for skin regeneration) to also regenerate oral tissue - mucosa and bone, by comparing this biomaterial, in a split-mouth rabbit model, to Mucoderm®, a xenogeneic collagen matrix certified for keratinized oral mucosa healing. The clinical reason behind this experimental animal model was to determine whether the benefits of this advanced skin regeneration product (Suprathel®) could be conveyed for future evaluation in clinical trials of oral tissue regeneration in humans. The outcomes of this study validated the use of Suprathel®, a terpolymer of polylactide with trimethylene carbonate and ε-caprolactone, for stimulation of oral epithelium and alveolar bone regeneration in rabbits. Both Suprathel® and Mucoderm® exhibited comparable results and the null hypothesis stating a comparable regenerating effect of these two materials could not be rejected.


Assuntos
Osso e Ossos/patologia , Epitélio/patologia , Boca/fisiologia , Poliésteres/química , Regeneração , Cicatrização , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Osso Esponjoso/patologia , Regeneração Tecidual Guiada , Masculino , Mucosa Bucal/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Coelhos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA