Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 26(11): 6681-6698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070150

RESUMO

BACKGROUND: Short implants are proposed as a less invasive alternative with fewer complications than standard implants in combination with sinus lift. The aim of this systematic review and meta-analysis was to state the efficacy of placing short implants (≤ 6 mm) compared to standard-length implants (≥ 8 mm) performing sinus lift techniques in patients with edentulous posterior atrophic jaws. Efficacy will be evaluated through analyzing implant survival (IS) and maintenance of peri-implant bone (MBL). METHODS: Screening process was done using the National Library of Medicine (MEDLINE by PubMed), EMBASE, the Cochrane Oral Health, and Web of Science (WOS). The articles included were randomized controlled trials. Risk of bias was evaluated according to The Cochrane Collaboration's tool. Weighted means were calculated. Heterogeneity was determined using Higgins (I2). A random-effects model was applied. Secondary outcomes such as surgical time, patient satisfaction, mucositis and peri-implantitis, pain, and swelling were analyzed. RESULTS: Fourteen studies (597 patients and 901 implants) were evaluated. IS was 1.02 risk ratio, ranging from 1.00 to 1.05 (CI 95%) (p = 0.09), suggesting that IS was similar when both techniques were used. MBL was higher in patients with standard-length implants plus sinus lift elevation (p = 0.03). MBL was 0.11 (0.01-0.20) mm (p = 0.03) and 0.23 (0.07-0.39) mm (p = 0.005) before and after 1 year of follow-up, respectively, indicating that the marginal bone loss is greater for standard-length implants. DISCUSSION: Within the limitations of the present study, as relatively small sample size, short dental implants can be used as an alternative to standard-length implants plus sinus elevation in cases of atrophic posterior maxilla. Higher MBL was observed in the groups where standard-length implants were used, but implant survival was similar in both groups. Moreover, with short implants, it was observed a reduced postoperative discomfort, minimal invasiveness, shorter treatment time, and reduced costs. CLINICAL CLINICAL RELEVANCE: The low MBL promoted by short implants does contribute to a paradigm shift from sinus grafting with long implants to short implants. Further high-quality long-term studies are required to confirm these findings.


Assuntos
Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Humanos , Planejamento de Prótese Dentária , Maxila/cirurgia , Implantação Dentária Endóssea/métodos , Levantamento do Assoalho do Seio Maxilar/métodos , Falha de Restauração Dentária
2.
J Dent ; 150: 105334, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218289

RESUMO

OBJECTIVES: To investigate the effect of dentin infiltration with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs) on hydroxyapatite formation, crystallinity and elasticity of conditioned resin-dentin interfaces. METHODS: Dentin conditioned surfaces were infiltrated with NPs or TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nanoindentation to determine the modulus of elasticity, X-ray diffraction and transmission electron microscopy through selected area diffraction and bright-filed imaging. RESULTS: TDg-NPs provoked peaks narrowing after the diffraction-intensity analysis that corresponded with high crystallinity, with an increased modulus of Young after load cycling in comparison with the samples treated with undoped NPs. New minerals, in the group of TDg-NPs, showed the greatest both deviation of line profile from perfect crystal diffraction and dimension of the lattice strain, i.e., crystallite, grain size and microstrain and 002 plane-texture. The new minerals generated after TDg-NPs application and mechanical loading followed a well defined lineation. Undoped NPs mostly produced small hydroxyapatite crystallites, non crystalline or amorphous in nature with poor maturity. CONCLUSIONS: Tideglusib promoted the precipitation of hydroxyapatite, as a major crystalline phase, at the intrafibrillar compartment of the collagen fibrils, enabling functional mineralization. TDg-NPs facilitated nucleation of crystals randomly oriented, showing less structural variation in angles and distances that improved crystallographic relative order of atoms and maturity. Nanocrystals inducted by TDg-NPs were hexagonal prisms of submicron size. Thermal challenging of dentin treated with TDg-NPs have provoked a decrease of functional mineralization and crystallinity, associated to immature hydroxyapatite. CLINICAL SIGNIFICANCE: New polycrystalline lattice formation generated after TDg-NPs infiltration may become correlated with high mechanical performance. This association can be inferred from the superior crystallinity that was obtained in presence of tideglusib. Immature crystallites formed in dentin treated with undoped NPs will account for a high remineralizing activity.

3.
Dent Mater ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271304

RESUMO

OBJECTIVES: The aim of this study was to determine the viscoelastic performance and energy dissipation of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs). METHODS: Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging. Resin-dentin interfaces were evaluated through nano-DMA/complex-loss-storage moduli-tan delta assessment and atomic force microscopy (AFM) analysis. RESULTS: Dentin infiltrated with NPs and load cycled attained the highest complex modulus at hybrid layer and bottom of hybrid layer. Intertubular dentin treated with undoped NPs showed higher complex modulus than peritubular dentin, after load cycling, provoking energy concentration and breakdown at the interface. After infiltrating with TDg-NPs, complex modulus was similar between peri-intertubular dentin and energy dissipated homogeneously. Tan delta at intertubular dentin was higher than at peritubular dentin, after using TDg-NPs and load cycling. This generated the widest bandwidth of the collagen fibrils and bridge-like mineral structures that, as sight of energy dissipation, fastened active dentin remodeling. TDg-NPs inducted scarce mineralization after thermo-cycling, but these bridging processes limited breakdown zones at the interface. SIGNIFICANCE: TDg-based NPs are then proposed for effective dentin remineralization and tubular seal, from a viscoelastic approach.

4.
Dent Mater ; 39(1): 41-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460577

RESUMO

OBJECTIVE: To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration. METHODS: Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included. Coronal dentin surfaces were studied by nano-dynamic mechanical analysis measurements, atomic force microscopy, X-ray diffraction and transmission electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-Newman-Keuls multiple comparisons (p < 0.05). RESULTS: At 21 d of storage time, both groups doped with Dex exhibited the highest complex, storage and loss moduli among groups. Zn-Dex-NPs and Dex-NPs promoted the highest and lowest tan delta values, respectively. Dex-NPs contributed to increase the fibril diameters of dentin collagen over time. Dentin surfaces treated with Zn-Dex-NPs attained the lowest nano-roughness values, provoked the highest crystallinity, and produced the longest and shortest crystallite and grain size. These new crystals organized with randomly oriented lattices. Dex-NPs induced the highest microstrain. Crystalline and amorphous matter was present in the mineral precipitates of all groups, but Zn and Dex loaded NPs helped to increase crystallinity. SIGNIFICANCE: Dentin treated with Zn-Dex-NPs improved crystallographic and atomic order, providing structural stability, high mechanical performance and tissue maturation. Amorphous content was also present, so high hydroxyapatite solubility, bioactivity and remineralizing activity due to the high ion-rich environment took place in the infiltrated dentin.


Assuntos
Nanopartículas , Remineralização Dentária , Zinco , Humanos , Dentina/química , Dexametasona/farmacologia , Dexametasona/análise , Durapatita/farmacologia , Nanopartículas/química , Polímeros , Zinco/farmacologia
5.
J Dent ; 130: 104447, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754111

RESUMO

OBJECTIVES: Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs). METHODS: Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs. Bonded interfaces were also created and stored for 24 h or 21d, and then submitted to microtensile bond strength testing. Dentin remineralization was analyzed by Nanohardness, Young's modulus and Raman analysis. RESULTS: At 21d of storage, dentin treated with undoped-NPs attained the lowest nanohardness and Young's modulus. Dex-NPs and Zn-Dex-NPs increased dentin nanohardness and Young's modulus after 21d Raman analysis showed high remineralization, crystallinity, crosslinking and better structure of collagen when functionalized Dex-NPs were present at the dentin interface. CONCLUSIONS: Infiltration of dentin with Dex-NPs promoted functional remineralization as proved by nanomechanical and morpho-chemical evaluation tests. Dexamethasone in dentin facilitated crystallographic maturity, crystallinity and improved maturity and secondary structure of dentin collagen. CLINICAL SIGNIFICANCE: Using dexamethasone-functionalized NPs before resin infiltration is a clear option to obtain dentin remineralization, as these NPs produce the reinforcement of the dentin structure, which will lead to the improvement of the longevity of resin restorations.


Assuntos
Colagem Dentária , Nanopartículas , Humanos , Cimentos Dentários/química , Nanopartículas/química , Colágeno , Dentina/química , Resistência à Tração , Dexametasona/análise , Teste de Materiais , Adesivos Dentinários/química , Cimentos de Resina/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-35682086

RESUMO

Research has been conducted into the advantages of the systemic administration of antibiotics. The aim of this systematic review and meta-analysis was to assess the efficacy of systemic antibiotic administration in the treatment of peri-implantitis in terms of bleeding on probing (BoP) and probing pocket depth (PPD). Literature searches were performed across PubMed, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL) to identify randomized controlled trials and observational clinical studies. After peri-implantitis treatment, PPD was reduced by 0.1 mm (p = 0.58; IC 95% [-0.24, 0.47]), indicating a non-significant effect of antibiotic administration on PPD. The BoP odds ratio value was 1.15 (p = 0.5; IC 95% [0.75, 1.75]), indicating that the likelihood of bleeding is almost similar between the test and control groups. Secondary outcomes were found, such as reduced clinical attachment level, lower suppuration and recession, less bone loss, and a reduction in total bacterial counts. In the treatment of peri-implantitis, the systemic antibiotic application reduces neither PPD nor BoP. Therefore, the systemic administration of antibiotics, in the case of peri-implantitis, should be rethought in light of the present results, contributing to address the problem of increasing antibiotic resistance.


Assuntos
Peri-Implantite , Humanos , Antibacterianos/uso terapêutico , Carga Bacteriana , Peri-Implantite/tratamento farmacológico , Resultado do Tratamento
7.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35160631

RESUMO

This is a narrative review of the literature assessing the potential effectiveness of doping dentin polymeric adhesives with zinc compounds in order to improve bonding efficacy, remineralization and protection against degradation. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI and Web of Science. Through our search, we found literature demonstrating that Zn-doped dentin adhesives promote protection and remineralization of the resin-dentin interfaces. The increased bioactivity has also facilitated dentinal tubules' occlusion by crystals' precipitation contributing to improved sealing efficacy of restorations. Loading dentin adhesives with zinc gives rise to an increase of both crystallinity of mineral and crosslinking of collagen. The main role of zinc, in dentin adhesives, is to inhibit collagen proteolysis. We concluded that zinc exerts a protective effect through binding at the collagen-sensitive cleavage sites of matrix-metalloproteinases (MMPs), contributing to dentin matrix stabilization. Zinc may not only act as a MMPs inhibitor, but also influence signaling pathways and stimulate metabolic effects in dentin mineralization and remineralization processes. Zn-doped adhesives increase the longevity of dentin bonding through MMPs inhibition. Zn poses a remineralization strategy in demineralized dentin.

8.
J Dent ; 107: 103616, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636241

RESUMO

OBJECTIVES: The aim was to state the different applications and the effectiveness of polymeric zinc-doped nanoparticles to achieve dentin remineralization. DATA, SOURCES AND STUDY SELECTION: Literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken. CONCLUSIONS: Polymeric nanospheres (NPs) were efficiently loaded with zinc. NPs sequestered calcium and phosphate in the presence of silicon, and remained effectively embedded at the hybrid layer. NPs incorporation did not alter bond strength and inhibited MMP-mediated dentin collagen degradation. Zn-loaded NPs remineralized the hybrid layer inducing a generalized low-carbonate substitute apatite precipitation, chemically crystalline with some amorphous components, and an increase in mechanical properties was also promoted. Viscoelastic analysis determined that dentin infiltrated with Zn-NPs released the stress by breaking the resin-dentin interface and creating specific mineral formations in response to the energy dissipation. Bacteria were scarcely encountered at the resin-dentin interface. The combined antibacterial and remineralizing effects, when Zn-NPs were applied, reduced biofilm formation. Zn-NPs application at both cervical and radicular dentin attained the lowest microleakage and also promoted durable sealing ability. The new zinc-based salt minerals generated covered the dentin surface totally occluding cracks, porosities and dentinal tubules. CLINICAL SIGNIFICANCE: Zinc-doped NPs are proposed for effective dentin remineralization and tubular occlusion. This offers new strategies for regeneration of eroded cervical dentin, effective treatment of dentin hypersensitivity and in endodontically treated teeth previous to the canal filling. Zn-NPs also do reduce biofilm formation due to antibacterial properties.


Assuntos
Nanopartículas , Zinco , Dentina , Odontologia , Polímeros
9.
J Dent ; 113: 103790, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34455016

RESUMO

OBJECTIVES: The aim of this systematic review and meta-analysis was to state the efficacy of local administration of antibiotics in the treatment of peri-implantitis in terms of peri-implant probing depth (PPD) and bleeding on probing (BoP) reduction. DATA, SOURCES AND STUDY SELECTION: Electronic and manual literature searches were conducted. Screening process was done using the National Library of Medicine (MEDLINE by PubMed), Embase and the Cochrane Oral Health. Included articles were randomized controlled trials and observational studies. Weighted means were calculated. Heterogeneity was determined using Higgins (I2). Due to the encountered heterogeneity between the studies being combined, random-effects models were applied in order to analyze effect sizes. Twelve studies (365 patients and 463 implants) were included in the systematic review. After peri-implantitis treatment with local antibiotics, PPD was reduced 1.40 mm (95% confidence interval: 0.82-1.98). When local antibiotics were applied, a 0.30 mm higher reduction of PPD was obtained than in the control group (95% confidence interval: 0.07-0.53). BoP attained an odds ratio value of 1.82 (95% confidence interval: 1.09-3.04), indicating that the likehood of bleeding is almost two-fold when antibiotics are not locally administrated. Adverse effects were not found after applying local antibiotics. CONCLUSIONS: The local antibiotic administration does reduce, without adverse effects, both peri-implant probing depths and bleeding on probing in patients affected by peri-implantitis, if compared to control groups without local antibiotic application. CLINICAL SIGNIFICANCE: Patients with dental implants frequently suffer from peri-implantitis. Clinical features of peri-implantitis lesions include the presence of bleeding on probing and increased peri-implant probing depths. Both BoP and PPD have become reduced after local administration of antibiotics.


Assuntos
Implantes Dentários , Peri-Implantite , Antibacterianos/uso terapêutico , Implantes Dentários/efeitos adversos , Humanos , Peri-Implantite/tratamento farmacológico
10.
Polymers (Basel) ; 13(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072433

RESUMO

Barrier membranes are employed in guided bone regeneration (GBR) to facilitate bone in-growth. A bioactive and biomimetic Zn-doped membrane with the ability to participate in bone healing and regeneration is necessary. The aim of the present study is to state the effect of doping the membranes for GBR with zinc compounds in the improvement of bone regeneration. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI, Embase, Scopus and Web of Science. A narrative exploratory review was undertaken, focusing on the antibacterial effects, physicochemical and biological properties of Zn-loaded membranes. Bioactivity, bone formation and cytotoxicity were analyzed. Microstructure and mechanical properties of these membranes were also determined. Zn-doped membranes have inhibited in vivo and in vitro bacterial colonization. Zn-alloy and Zn-doped membranes attained good biocompatibility and were found to be non-toxic to cells. The Zn-doped matrices showed feasible mechanical properties, such as flexibility, strength, complex modulus and tan delta. Zn incorporation in polymeric membranes provided the highest regenerative efficiency for bone healing in experimental animals, potentiating osteogenesis, angiogenesis, biological activity and a balanced remodeling. Zn-loaded membranes doped with SiO2 nanoparticles have performed as bioactive modulators provoking an M2 macrophage increase and are a potential biomaterial for promoting bone repair. Zn-doped membranes have promoted pro-healing phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA