Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomacromolecules ; 25(2): 564-589, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38174643

RESUMO

As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.


Assuntos
Gelatina , Alicerces Teciduais , Humanos , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual , Colágeno , Polietilenoglicóis , Materiais Biocompatíveis/química
2.
Biomed Mater ; 17(4)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35477166

RESUMO

Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g. volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.


Assuntos
Hidrogéis , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Polímeros , Água
3.
Adv Healthc Mater ; 11(8): e2200027, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037731

RESUMO

Micropores are essential for tissue engineering to ensure adequate mass transportation for embedded cells. Despite the considerable progress made by advanced 3D bioprinting technologies, it remains challenging to engineer micropores of 100 µm or smaller in cell-laden constructs. Here, a microgel-templated porogel (MTP) bioink platform is reported to introduce controlled microporosity in 3D bioprinted hydrogels in the presence of living cells. Templated gelatin microgels are fabricated with varied sizes (≈10, ≈45, and ≈100 µm) and mixed with photo-crosslinkable formulations to make composite MTP bioinks. The addition of microgels significantly enhances the shear-thinning and self-healing viscoelastic properties and thus the printability of bioinks with cell densities up to 1 × 108 mL-1 in matrix. Consistent printability is achieved for a series of MTP bioinks based on different component ratios and matrix materials. After photo-crosslinking the matrix phase, the templated microgels dissociated and diffused under physiological conditions, resulting in corresponding micropores in situ. When embedding osteoblast-like cells in the matrix phase, the MTP bioinks support higher metabolic activity and more uniform mineral formation than bulk gel controls. The approach provides a facile strategy to engineer precise micropores in 3D printed structures to compensate for the limited resolution of current bioprinting approaches.


Assuntos
Bioimpressão , Microgéis , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Trends Biotechnol ; 39(2): 150-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32650955

RESUMO

Natural tissues and organs exhibit an array of spatial gradients, from the polarized neural tube during embryonic development to the osteochondral interface present at articulating joints. The strong structure-function relationships in these heterogeneous tissues have sparked intensive research into the development of methods that can replicate physiological gradients in engineered tissues. In this Review, we consider different gradients present in natural tissues and discuss their critical importance in functional tissue engineering. Using this basis, we consolidate the existing fabrication methods into four categories: additive manufacturing, component redistribution, controlled phase changes, and postmodification. We have illustrated this with recent examples, highlighted prominent trends in the field, and outlined a set of criteria and perspectives for gradient fabrication.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Alicerces Teciduais/química
5.
Nanoscale ; 13(23): 10266-10280, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34085085

RESUMO

The application of nanotechnology to regenerative medicine has increased over recent decades. The development of materials that can influence biology at the nanoscale has gained interest as our understanding of the interactions between cells and biomaterials at the nanoscale has grown. Materials that are either nanostructured or influence the nanostructure of the cellular microenvironment have been developed and shown to have advantages over their microscale counterparts. There are several reviews which have been published that discuss how nanomaterials have been used in regenerative medicine, particularly in bone regeneration. Most of these studies have explored this concept in specific areas, such as the application of glass-based nanocomposites, nanotechnology for targeted drug delivery to stimulate bone repair, and the progress in nanotechnology for the treatment of osteoporosis. In this review paper, the impact of nanotechnology in biomaterials development for bone regeneration will be discussed highlighting specifically, nanostructured materials that influence mechanical properties, biocompatibility, and osteoinductivity.


Assuntos
Nanoestruturas , Engenharia Tecidual , Materiais Biocompatíveis , Regeneração Óssea , Nanotecnologia , Medicina Regenerativa
7.
Adv Mater ; 31(17): e1900291, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30844123

RESUMO

The controlled fabrication of gradient materials is becoming increasingly important as the next generation of tissue engineering seeks to produce inhomogeneous constructs with physiological complexity. Current strategies for fabricating gradient materials can require highly specialized materials or equipment and cannot be generally applied to the wide range of systems used for tissue engineering. Here, the fundamental physical principle of buoyancy is exploited as a generalized approach for generating materials bearing well-defined compositional, mechanical, or biochemical gradients. Gradient formation is demonstrated across a range of different materials (e.g., polymers and hydrogels) and cargos (e.g., liposomes, nanoparticles, extracellular vesicles, macromolecules, and small molecules). As well as providing versatility, this buoyancy-driven gradient approach also offers speed (<1 min) and simplicity (a single injection) using standard laboratory apparatus. Moreover, this technique is readily applied to a major target in complex tissue engineering: the osteochondral interface. A bone morphogenetic protein 2 gradient, presented across a gelatin methacryloyl hydrogel laden with human mesenchymal stem cells, is used to locally stimulate osteogenesis and mineralization in order to produce integrated osteochondral tissue constructs. The versatility and accessibility of this fabrication platform should ensure widespread applicability and provide opportunities to generate other gradient materials or interfacial tissues.


Assuntos
Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Nanocompostos/química , Fenômenos Físicos , Alicerces Teciduais/química , Células Cultivadas/química , Reagentes de Ligações Cruzadas/química , Gelatina/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Mesenquimais , Metacrilatos/química , Osteogênese , Propriedades de Superfície , Engenharia Tecidual/métodos
8.
ACS Appl Mater Interfaces ; 10(15): 12424-12430, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29582989

RESUMO

Multilayer (ML) hydrogels are useful to achieve stepwise and heterogeneous control over the organization of biomedical materials and cells. There are numerous challenges in the development of fabrication approaches toward this, including the need for mild processing conditions that maintain the integrity of embedded compounds and the versatility in processing to introduce desired complexity. Here, we report a method to fabricate heterogeneous multilayered hydrogels based on diffusion-induced gelation. This technique uses the quick diffusion of ions and small molecules (i.e., photoinitiators) through gel-sol or gel-gel interfaces to produce hydrogel layers. Specifically, ionically (e.g., alginate-based) and covalently [e.g., gelatin methacryloyl (GelMA-based)] photocross-linked hydrogels are generated in converse directions from the same interface. The ML (e.g., seven layers) ionic hydrogels can be formed within seconds to minutes with thicknesses ranging from tens to hundreds of micrometers. The thicknesses of the covalent hydrogels are determined by the reaction time (or the molecule diffusion time). Multiwalled tubular structures (e.g., mimicking branched multiwalled vessels) are mainly investigated in this study based on a removable gel core, but this method can be generalized to other material patterns. The process is also demonstrated to support the encapsulation of viable cells and is compatible with a range of thermally reversible core materials (e.g., gelatin and Pluronic F127) and covalently cross-linked formulations (e.g., GelMA and methacrylated hyaluronic acid). This biofabrication process enhances our ability to fabricate a range of structures that are useful for biomedical applications.


Assuntos
Hidrogéis/química , Materiais Biocompatíveis , Gelatina , Ácido Hialurônico , Engenharia Tecidual
9.
Biofabrication ; 8(4): 045004, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27716633

RESUMO

Three-dimensional (3D) printed scaffolds have great potential in biomedicine; however, it is important that we are able to design such scaffolds with a range of diverse properties towards specific applications. Here, we report the extrusion-based 3D printing of biodegradable and photocurable acrylated polyglycerol sebacate (Acr-PGS) to fabricate scaffolds with elastic properties. Two Acr-PGS macromers were synthesized with varied molecular weights and viscosity, which were then blended to obtain photocurable macromer inks with a range of viscosities. The quality of extruded and photocured scaffolds was dependent on the initial ink viscosity, with flow of printed material resulting in a loss of structural resolution or sample breaking observed with too low or too high viscosity inks, respectively. However, scaffolds with high print resolution and up to ten layers were fabricated with an optimal ink viscosity. The mechanical properties of printed scaffolds were dependent on printing density, where the scaffolds with lower printing density possessed lower moduli and failure properties than higher density scaffolds. The 3D printed scaffolds supported the culture of 3T3 fibroblasts and both spreading and proliferation were observed, indicating that 3D printed Acr-PGS scaffolds are cytocompatible. These results demonstrate that Acr-PGS is a promising material for the fabrication of elastomeric scaffolds for biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Tecnologia Biomédica/métodos , Elastômeros/química , Glicerol/química , Polímeros/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/síntese química , Elastômeros/síntese química , Camundongos , Células NIH 3T3 , Porosidade , Reologia , Resistência à Tração , Engenharia Tecidual , Viscosidade
10.
Biofabrication ; 7(1): 015010, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25691496

RESUMO

3D printing has evolved into a versatile technology for fabricating tissue-engineered constructs with spatially controlled cells and biomaterial distribution to allow biomimicking of in vivo tissues. In this paper, we reported a novel study of 3D printing of cell lines derived from human embryonic kidney tissue into a macroporous tissue-like construct. Nozzle temperature, chamber temperature and the composition of the matrix material were studied to achieve high cell viability (>90%) after 3D printing and construct formation. Long-term construct stability with a clear grid structure up to 30 days was observed. Cells continued to grow as cellular spheroids with strong cell-cell interactions. Two transfected cell lines of HEK 293FT were also 3D printed and showed normal biological functions, i.e. protein synthesis and gene activation in responding to small molecule stimulus. With further refinement, this 3D cell printing technology may lead to a practical fabrication of functional embryonic tissues in vitro.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Impressão Tridimensional , Alicerces Teciduais/química , Agregação Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Genes Reporter , Células HEK293 , Humanos , Porosidade , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA