Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Bioanal Chem ; 416(6): 1505-1515, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267586

RESUMO

This study focuses on the detection of ethyl methyl phosphonic acid (EMPA), a metabolite of the banned organophosphorus nerve agent VX. We developed an electrochemical sensor utilizing the molecularly imprinted polymer (MIP) based on 4-aminobenzoic acid (4-ABA) and tetraethyl orthosilicate for the selective detection of EMPA in human plasma and urine samples. The 4-ABA@EMPA/MIP/GCE sensor was constructed by a thermal polymerization process on a glassy carbon electrode and sensor characterization was performed by cyclic voltammetry and electrochemical impedance spectroscopy. The 4-ABA@EMPA/MIP/GCE sensor demonstrated impressive linear ranges 1.0 × 10-10 M-2.5 × 10-9 M for the standard solution, 1.0 × 10-10 M-2.5 × 10-9 M for the urine sample, and 1.0 × 10-10 M-1 × 10-9 M of EMPA for the plasma sample with outstanding detection limits of 2.75 × 10-11 M (standard solution), 2.11 × 10-11 M (urine), and 2.36 × 10-11 M (plasma). The sensor exhibited excellent recovery percentages ranging from 99.86 to 101.30% in urine samples and 100.62 to 101.08% in plasma samples. These findings underscore the effectiveness of the 4-ABA@EMPA/MIP/GCE as a straightforward, highly sensitive, and selective interface capable of detecting the target analyte EMPA in human plasma and urine samples.


Assuntos
Antracenos , Impressão Molecular , Agentes Neurotóxicos , Organofosfonatos , Compostos Organotiofosforados , Humanos , Polímeros Molecularmente Impressos , Polímeros/química , Compostos Organofosforados , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Eletrodos , Limite de Detecção
2.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730044

RESUMO

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Polímeros Molecularmente Impressos , Zinco , Polímeros Molecularmente Impressos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Zinco/química , Grafite/química , Humanos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/análise , Aminoimidazol Carboxamida/sangue , Aminoimidazol Carboxamida/química , Nanoestruturas/química , Eletrodos
3.
Mikrochim Acta ; 191(5): 270, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630200

RESUMO

A comparative analysis of molecularly imprinted polymers based on different synthesis techniques was performed for the recognition of molnupiravir (MOL). The polymerizations were performed with 3-thienyl boronic acid (3-TBA) as a functional monomer by electropolymerization (EP) and with guanine methacrylate (GuaM) as a functional monomer by photopolymerization (PP). Morphological and electrochemical characterizations of the developed sensors were investigated to verify the constructed sensors. Moreover, quantum chemical calculations were used to evaluate changes on the electrode surface at the molecular and electronic levels. The dynamic linear range of both designed sensors under optimized experimental conditions was found to be 7.5 × 10-12-2.5 × 10-10 M and 7.5 × 10-13-2.5 × 10-11 M for EP and PP, respectively. The effect of various interfering agents on MOL peak current was assessed for the selectivity of the study. In the presence of 100 times more interfering agents, the RSD and recovery values were determined. The RSD values of GuaM/MOL@MIP/GCE and poly(Py-co-3-PBA)/MOL@MIP/GCE sensors were found to be 1.99% and 1.72%, respectively. Furthermore, the recovery values of the MIP-based sensors were 98.18-102.69% and 98.05-103.72%, respectively. In addition, the relative selectivity coefficient (k') of the proposed sensor was evaluated, and it exhibited good selectivity for MOL with respect to the NIP sensor. The prepared sensor was successfully applied to determine MOL in commercial serum samples and capsule form. In conclusion, the developed sensors provided excellent reproducibility, repeatability, high sensitivity, and selectivity against the MOL molecule.


Assuntos
Ácidos Borônicos , Citidina/análogos & derivados , Hidroxilaminas , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Eletrodos , Guanina , Metacrilatos
4.
Mikrochim Acta ; 190(6): 205, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37160779

RESUMO

Tofacitinib citrate (TOF) is a Janus kinase-3 inhibitor used for rheumatoid arthritis treatment. In this study, a molecularly imprinted polymer (MIP)-based sensor was produced using acrylamide as the functional monomer via photopolymerization technique for the electrochemical determination of TOF. This study is the first one to explain the electrochemical determination of TOF with a highly selective MIP-based sensor. The surface characterization of the MIP-based sensor was performed with scanning electron microscopy and energy-dispersive X-ray spectroscopy methods, and it was expanded with electrochemical characterization by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) methods. TOF determination was performed using differential pulse voltammetry (DPV) and EIS methods in standard solution and spiked serum sample in the linear range between 1×10-11 M and 1×10-10 M. Very low limit of detection and limit of quantification values were found, confirming the sensitivity of the sensor. Recovery analysis with spiked serum and tablet samples verified the sensor's accuracy and applicability using DPV and EIS methods. The selectivity of the sensor was confirmed with imprinting factor and interference studies, and the sensor performance was controlled using non-imprinted polymer for comparison at every step.


Assuntos
Polímeros Molecularmente Impressos , Piperidinas , Polímeros , Acrilamida
5.
Mikrochim Acta ; 190(10): 397, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715798

RESUMO

Regorafenib (REG) is a diphenylurea derivative oral multikinase inhibitor. It plays an important role in the treatment of colorectal cancer, metastatic gastrointestinal stromal tumors, and hepatocellular carcinoma. Molecularly imprinted polymer (MIP) based glassy carbon electrodes (GCE) were fabricated using photopolymerization (PP) and thermal polymerization (TP) methods. The characterizations of the proposed sensors were investigated by electrochemical techniques, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Several parameters were studied in detail for the optimum conditions of MIP-based sensors, such as dropping volume, photopolymerization and thermal polymerization durations, removal medium and time, and rebinding time. Both sensors' analytical validation and electroanalytical performance comparison were made in different REG concentrations ranging between 0.1 nM and 2.5 nM in standard solution and commercial human serum samples. The limit of detection (LOD) of PP-REG@MIP/GCE and TP-REG@MIP/GCE were 9.13 × 10-12 M and 1.44 × 10-11 M in standard solutions and 2.04 × 10-11 M and 2.02 × 10-11 M in serum samples, respectively. The applicability of the proposed sensors was tested using commercial human serum samples and pharmaceutical form of REG with high recovery values (PP-REG@MIP/GCE and TP REG@MIP/GCE sensors, 99.56-101.59%, respectively). The selectivity of the sensor for REG was investigated in the presence of similar molecules: Sorafenib, Sunitinib, Nilotinib, and Imatinib. The developed techniques and sensors checked the possible biological compounds and ions' effects and storage stability.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Polímeros Molecularmente Impressos , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Carbono
6.
Anal Bioanal Chem ; 414(19): 5793-5803, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35641645

RESUMO

A new electrochemical sensor based on molecularly imprinted tetraethyl orthosilicate (TEOS)-based porous interface was developed for selective recognition of bisphenol F (BPF) in this study. The sensor was prepared by depositing the solution containing TEOS and L-tryptophan (L-Trp) in the presence of cetyltrimethylammonium bromide (CTAB) as a pore-maker via hydrolysis/condensation reaction on the glassy carbon electrode (GCE). While the surface morphology and structure characterization were carried out using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), electrochemical characterization was performed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The resulted MIP(TEOS:L-Trp)@GCE achieved a wide linear range of 1 × 10-15-1 × 10-14 M for BPF detection with an excellent detection limit of 0.291 fM. Furthermore, the recovery of BPF from spiked bottled water and serum samples varied between 98.83 and 101.03%. These results demonstrate that MIP(TEOS:L-Trp)@GCE was found to be a simple, sensitive, and selective smart interface to detect trace pollution even from complicated samples.


Assuntos
Impressão Molecular , Compostos Benzidrílicos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Fenóis , Polímeros/química , Dióxido de Silício , Triptofano
7.
Anal Bioanal Chem ; 414(28): 8023-8033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36138122

RESUMO

Tiotropium bromide (TIO) is a long-acting bronchodilator used in the treatment of chronic obstructive pulmonary disease (COPD) and asthma. Specifically, it is used to prevent patients from worsening breathing difficulties. In this study, a new TIO-imprinted electrochemical sensor was designed to detect TIO in serum and pharmaceutical samples. Methacryloyl-L-histidine-cobalt(II) [MAH-Co(II)] has been used as a metal-chelating monomer for synthesizing selective molecularly imprinted polymer (MIP). MIP film has been developed on glassy carbon electrodes using MAH-Co(II) as the functional monomer, 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker in the photopolymerization method. The surface characterization of the developed MAH-Co(II)@MIP/GCE electrochemical sensor was done using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Also, the electrochemical behavior of the sensor was provided by differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. Under optimized experimental conditions, the linearity range was in the range of 10-100 fM, and the limit of detection (LOD) and limit of quantitation (LOQ) values were calculated as 2.73 fM and 9.75 fM, respectively. The MAH-Co(II)@MIP/GCE sensor was used to precisely determine TIO in capsule and commercial serum samples. The results demonstrated that the MIP could specifically recognize TIO compared to structurally related drugs and could be reliably applied to the direct determination of drugs from real samples.


Assuntos
Impressão Molecular , Humanos , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Brometo de Tiotrópio , Polímeros/química , Eletrodos , Limite de Detecção
8.
Electrophoresis ; 41(9): 666-677, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022289

RESUMO

Application of hollow fiber-based electromembrane extraction was studied for extraction and quantification of phenytoin from exhaled breath condensate (EBC). Phenytoin is extracted from EBC through a supported liquid membrane consisting of 1-octanol impregnated in the walls of a hollow fiber, and into an alkaline aqueous acceptor solution inside the lumen of the fiber. Under the obtained conditions of electromembrane extraction, that is, the extraction time of 15 min, stirring speed of 750 rpm, donor phase pH at 11.0, acceptor pH at 13.0, and an applied voltage of 15 V across the supported liquid membrane, an enrichment factor of 102-fold correspond to extraction percent of 25.5% was achieved. Good linearity was obtained over the concentration range of 0.001-0.10 µg/mL (r2 = 0.9992). Limits of detection and quantitation were 0.001 and 0.003 µg/mL, respectively. The proposed method was successfully applied to determine phenytoin from EBC samples of patients receiving the drug. No interfering peaks were detected that indicating excellent selectivity of the method. The intra- and interday precisions (RSDs) were less than 14%.


Assuntos
Anticonvulsivantes/análise , Testes Respiratórios/métodos , Eletroforese Capilar/métodos , Fenitoína/análise , Anticonvulsivantes/química , Anticonvulsivantes/isolamento & purificação , Anticonvulsivantes/uso terapêutico , Fracionamento Químico , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Membranas Artificiais , Fenitoína/química , Fenitoína/isolamento & purificação , Fenitoína/uso terapêutico , Reprodutibilidade dos Testes , Convulsões/tratamento farmacológico
9.
Biomed Chromatogr ; 28(10): 1409-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24861889

RESUMO

Fulvestrant is used for the treatment of hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following anti-estrogen therapy. Several reversed-phase columns with variable silica materials, diameters, lengths, etc., were tested for the optimization study. A good chromatographic separation was achieved using a Waters X-Terra RP(18) column (250 × 4.6 mm i.d. × 5 µm) and a mobile phase, consisting of a mixture of acetonitrile-water (65:35; v/v) containing phosphoric acid (0.1%). The separation was carried out 40 °C with detection at 215 nm.The calibration curves were linear over the concentration range between 1.0-300 and 1.0-200 µg/mL for standard solutions and biological media, respectively. The proposed method is accurate and reproducible. Forced degradation studies were also realized. This fully validated method allows the direct determination of fulvestrant in dosage form and biological samples. The average recovery of the added fulvestrant amount in the samples was between 98.22 and 104.03%. The proposed method was also applied for the determination of fulvestrant from the polymeric-based nanoparticle systems. No interference from using polymers and other excipients was observed in in vitro drug release studies. Therefore an incorporation efficiency of fulvestrant-loaded nanoparticle could be determined accurately and specifically.


Assuntos
Cromatografia de Fase Reversa/métodos , Estradiol/análogos & derivados , Nanopartículas/química , Estradiol/análise , Estradiol/química , Estradiol/farmacocinética , Fulvestranto , Humanos , Cinética , Ácido Láctico , Limite de Detecção , Modelos Lineares , Polietilenoglicóis , Poliglactina 910 , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Reprodutibilidade dos Testes
10.
Anal Methods ; 16(10): 1480-1488, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372557

RESUMO

Rutin (RUT), a natural flavonoid with various beneficial pharmacological actions such as cardioprotective, antioxidant, anti-inflammatory, neuroprotective, etc., is found in the content of many plants that are consumed daily. Due to the healthful effects, RUT is also included in the composition of various herbal supplement samples. Therefore, it is highly important to develop a sensor with high selectivity and sensitivity to determine RUT in complex samples. In this study, it was aimed to take advantage of the cheap, easy, and sensitive nature of electrochemistry and, in addition, to improve the selectivity. For this purpose, the functional monomer selected in the fabricated molecularly imprinted polymer (MIP) was N-methacryloyl-L-aspartic acid (MA-Asp) while photopolymerization (PP) was applied as the polymerization route. After completing critical optimization steps, the developed sensor (MA-Asp@RUT/MIP-GCE) was characterized electrochemically and morphologically. As a result of analytical performance evaluation in standard solution, the linear response of the sensor was found in the concentration range between 1 and 10 pM with a detection limit of 0.269 pM. The recovery studies from plant extract and commercial herbal supplement samples emphasized accuracy and applicability. In imprinting factor studies figuring out quite good selectivity, molecules with a structure similar to RUT were selected as competitors to prove the affinity of the sensor against RUT. Consequently, the MA-Asp@RUT/MIP-GCE sensor offers a more sensitive and selective method thanks to its indirect analysis approach and also stands out with the diversity of its real sample application compared to other available studies.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Extratos Vegetais , Polímeros/química , Rutina , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Suplementos Nutricionais
11.
Talanta ; 274: 126005, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599116

RESUMO

In preparing monoclonal antibodies by hybridoma cell technology, the quality of B lymphocytes used for cell fusion directly affects the sensitivity of monoclonal antibodies. To obtain B-lymphocytes producing high-quality specific antibodies for cell fusion during the immunization phase of the antigen, we prepared a TH2-Cell stimulatory delivery system as a novel adjuvant. Astragalus polysaccharide has a good ability to enhance antigenic immune response, and it was encapsulated in biocompatible materials PLGA as an immunostimulatory factor to form the delivery system (APS-PLGA). The preparation conditions of APSP were optimized using RSM to attain the highest utilization of APS. Immunization against ZEN-BSA antigen using APSP as an adjuvant to obtain B lymphocytes producing ZEN-specific antibodies for cell fusion. As results present, APSP could induce a stronger TH2 immune response through differentiating CD4 T cells and promoting IL-4 and IL-6 cytokines. Moreover, it could slow down the release efficiency of ZEN-BSA and enhance the targeting of ZEN-BSA to lymph nodes in vivo experiments. Ultimately, the sensitivity of mouse serum ZEN-specific antibodies was enhanced upon completion of immunization, indicating a significant upregulation of high-quality B lymphocyte expression. In the preparation of monoclonal antibodies, the proportion of positive wells for the first screening was 60%, and the inhibition rates of the antibodies were all similar (>50%). Then we obtained the ZEN monoclonal antibody with IC50 of 0.049 ng/mL, which was more sensitive than most antibodies prepared under conventional adjuvants. Finally, a TRFIAS strip assay was preliminarily established with a LOD value of 0.246 ng/mL.


Assuntos
Adjuvantes Imunológicos , Anticorpos Monoclonais , Linfócitos B , Camundongos Endogâmicos BALB C , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Nanopartículas/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Camundongos , Feminino , Ativação Linfocitária/efeitos dos fármacos , Imunização
12.
Talanta ; 273: 125883, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521023

RESUMO

Quercetin (QUE) is a powerful antioxidant and one of the common phenolic compounds found in plants, vegetables, and fruits, which has shown many pharmacological activities. The complex nature of the matrix in which QUE is found and its importance and potential uses in diverse applications force the researchers to develop selective and sensitive sensors. In the present work, a novel molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the selective and sensitive determination of the QUE in plant extracts and food supplements. Tryptophan methacrylate (TrpMA) was chosen as the functional monomer, whereas the photopolymerization (PP) method was applied using a glassy carbon electrode (GCE). Electrochemical and morphological characterizations of the developed sensor (TrpMA@QUE/MIP-GCE) were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The linear range of the developed sensor was determined to be in the range of 1.0-25 pM, while the limit of detection (LOD) was calculated to be 0.235 pM. In conclusion, The TrpMA@QUE/MIP-GCE sensor might be classified as a promising platform for selective and sensitive determination of QUE not only in plant extracts but also in commercial food supplements because of its reliability, reproducibility, repeatability, stability, and fast response time.


Assuntos
Fragaria , Impressão Molecular , Rubus , Polímeros/química , Quercetina , Reprodutibilidade dos Testes , Metanol , Técnicas Eletroquímicas/métodos , Carbono/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos , Extratos Vegetais
13.
Bioelectrochemistry ; 152: 108411, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36924575

RESUMO

This study represents nanoparticle-based well-oriented recognition sites via interface imprinting, followed by selective and sensitive determination of fluoxetine (FLX). Herein, FLX was firstly immobilized onto ZnO NPs, and then polymerization was carried out with MAPA, HEMA, and EGDMA on the glassy carbon electrode via photopolymerization. After the etching of ZnO with and 10 mM HCI solution, a porous structure with recognition sites for FLX was constructed onto surface. The characterization of the electrochemical sensor was accomplished by utilizing CV, EIS, ATR-FTIR AFM, and SEM analysis. The DPV was used to determine FLX in standard solution, serum sample, and tap water. The effect of FLX concentration variation was studied using the DPV in the range of 1.0 × 10-11 M to 1.0 × 10-10 M with a detection limit of 2.67 × 10-12 M. This sensor showed specific recognition toward template, and more than 90% of its original response was retained after being stored in the desiccator at R.T. for 5 days. This technique has proven to be a powerful, highly selective, and sensitive tool for the rapid detection of FLX in tap water and spike serum samples.


Assuntos
Impressão Molecular , Óxido de Zinco , Fluoxetina , Polímeros/química , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Água , Eletrodos , Limite de Detecção
14.
Anal Methods ; 15(19): 2309-2317, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37129572

RESUMO

Sugammadex (SUG) is a synthetically modified γ-cyclodextrin derivative used in hospitals after surgeries to reverse the neuromuscular blockade induced by rocuronium or vecuronium. In this study, we aimed to develop the first electroanalytical quantification method for sugammadex by using molecular imprinting (MIP) via the electropolymerization (EP) technique. An EP-MIP film was formed by EP on a screen-printed gold electrode (SPAuE) and a new electrochemical sensor, EP-MIP(SUG)/SPAuE, was fabricated using the 4-aminophenol monomer with copper ions to enhance the MIP-binding site. Surface and electrochemical characterization of the EP-MIP(SUG)/SPAuE sensor have been done via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). After screening and optimization studies were carried out to fabricate a MIP-based electrochemical sensor, the analytical performance of EP-MIP(SUG)/SPAuE and the validation parameters were tested according to the ICH guidelines. The specificity/selectivity of the developed sensor has been shown by using common interferents found in the biological fluids and also molecules having similar structures, such as α-cyclodextrin, ß-cyclodextrin, and γ-cyclodextrin. As a result, a quantitative analysis method has been developed and validated by using the EP-MIP(SUG)/SPAuE sensor in the concentration range of 0.1-1.0 pM with very high sensitivity (limit of detection: 27.3 fM). The applicability of the method has been shown for bulk drug substances, pharmaceutical dosage forms, and commercial serum samples with good recovery and RSD% results. The EP-MIP(SUG)/SPAuE is the first electrochemical sensor developed for the determination of sugammadex serving the aims of simplicity, short analysis time, and low cost, and has the potential to be adapted in the future as a portable and/or wearable sensor via miniaturization.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Sugammadex , Polímeros/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos
15.
Anal Methods ; 15(40): 5316-5322, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37807938

RESUMO

In this research, two different molecularly imprinted polymer (MIP)-based electrochemical sensors were proposed for the determination of tolvaptan (TOL). Photopolymerization (PP) and thermal polymerization (TP) techniques were developed for the determination of TOL. The advantages of MIP were used to design an electrochemical sensor for selective and sensitive determination of TOL. TOL was determined on a glassy carbon electrode (GCE) using differential pulse voltammetry (DPV) for both techniques. Some important parameters affecting the sensor efficiency, such as template/monomer ratio, PP and TP time, drop volume, removal solutions, removal and rebinding time, etc., were optimized. The surface characterization of the proposed MIP-based electrochemical sensors was carried out with electrochemical characterization by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. It was extended with the scanning electron microscopy (SEM) technique. Under optimal conditions, the developed sensors showed good linearity between 1.0 × 10-11 M and 1.0 × 10-10 M, and 2.5 × 10-11 M and 2.5 × 10-10 M for PP and TP, respectively. Low detection limits (2.89 × 10-12 M (PP) and 1.88 × 10-13 M (TP)) were also obtained for TOL determination. The applicability of the proposed sensor was evaluated using tablet and commercial human serum samples. Interference and imprinting factor studies verified the selectivity and specificity of the proposed sensors, and the efficiency of the sensors was verified using an unprinted polymer for comparison at each step.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Humanos , Tolvaptan , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Comprimidos
16.
Anal Chim Acta ; 1280: 341866, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858567

RESUMO

BACKGROUND: Sorafenib (SOR) is a multikinase inhibitor anticancer drug that is used in treating non-small cell lung cancer. In this work, we focused on developing nanomaterial-supported smart porous interfaces by following the molecular imprinting approach for the selective determination of SOR. Determination-based studies in the literature for SOR are limited, and they are chromatographic techniques-based; hence, there is a need in the literature to elaborate the selective and sensitive analysis/monitoring of SOR in both biological and pharmaceutical samples with more studies. RESULTS: The results showed that adding ZnO NPs enhanced the signal five times compared to the solo molecularly imprinted polymer (MIP). Under the optimized conditions, ZnO/AMPS@MIP-GCE showed a linear response in the concentration range between 1.0 × 10-12 and 1.0 × 10-11 M with LOD and LOQ values of 2.25 × 10-13 M and 7.51 × 10-13 M, respectively, in the serum sample. The selectivity study was conducted against common cations, anions, and compounds such as dopamine, paracetamol, ascorbic acid, and uric acid. Also, the imprinting factor (IF) analysis was performed on selected drug substances having structural similarities to SOR and the relative IF values of regorafenib, leflunomide, teriflunomide, nilotinib, axitinib, and dasatinib indicated the selectivity of the developed sensor for SOR. Finally, ZnO/AMPS@MIP-GCE was implemented to determine SOR in the spiked commercial human serum samples and tablet dosage form with bias% between -0.43 and + 0.66. SIGNIFICANCE AND NOVELTY: This study is the first electrochemical study for the determination of SOR, and thanks to the ZnO NPs supported MIP sensor, it stands out in terms of both high sensitivity and superior selectivity. Also, this designed sensor provides controlled orientation of the template and complete removal of templates in a one-step process, allowing extremely low detection and quantification limits.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Impressão Molecular , Óxido de Zinco , Humanos , Polímeros Molecularmente Impressos , Polímeros/química , Sorafenibe , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção , Eletrodos
17.
Talanta ; 263: 124679, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257237

RESUMO

In this study, a molecularly imprinted polymer film (P (ANI)@MIP) on the electrode surface was fabricated using aniline as a functional monomer and octreotide (OC) as a template molecule. The developed P (ANI)@MIP was electrochemically electropolymerized on a glassy carbon electrode (GCE) surface. Each step of MIP production was evaluated by viewing the [Fe (CN)6]3-/4- signal obtained using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The P (ANI)@MIP film layer was studied with a scanning electron microscope (SEM), Raman, and contact angle measurements. The parameters consisting of monomer, template ratio, cycle number, removal solution, removal time, and rebinding time were optimized to obtain the best electrochemical sensor. The developed method was validated in line with ICH guidelines. The linear range, LOD, and LOQ were found as 10-80 fM, 0.801 fM, and 2.670 fM, respectively. The selectivity of the method was tested with the response of somatostatin and lanreotide from the same growth hormone family by comparing the OC response. The developed P (ANI)@MIP/GCE sensor is the first reported method for electrochemical analysis of OC. The P (ANI)@MIP/GCE sensor exhibited high sensitivity and selectivity for OC. The novel MIP sensor was used to determine OC in cancer patient plasma samples. The concentration of OC in cancer patients varied between 8.98 ng/mL and 10.10 ng/mL.


Assuntos
Impressão Molecular , Neoplasias , Humanos , Polímeros/química , Octreotida , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Carbono/química , Eletrodos , Limite de Detecção
18.
Crit Rev Anal Chem ; 52(6): 1223-1243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33475425

RESUMO

Contamination of environmental sources such as soils, sediments and rivers and human exposure caused by several endocrine disrupting compounds (EDCs) are considered as the most challenging issues of today's world. EDCs cover a wide variety of compounds ranging from phthalates to parabens and bisphenols (BPs) are the leading group among them. BPs are widely used during the production of different plastic materials such as food and beverage containers, toys, medical equipment and baby bottles that we use in every aspect of our lives. BPs may migrate from those products to different media under certain conditions and this situation causes chronic exposure for humans and other creatures in the environment. Especially bisphenol A (BPA) and its other analogues such as bisphenol F, bisphenol S and tetrabromobisphenol that have similar structures and are preferred as alternatives to BPA cause harmful adverse effects such as endocrine disruption, neurotoxicity, genotoxicity and cytotoxicity. There are legal restrictions and prohibitions by the European Union (EU) in order to prevent possible harmful effects. Therefore, it is important to develop highly sensitive, fast, easy to use and cheap sensors for the determination of BPs in biological, environmental and commercial samples. Electrochemical sensors, which are one of the most widely, used analytical techniques, provide these conditions. Additionally, it is possible to enhance the performance of electrochemical sensors with nanomaterials, molecularly imprinted polymers or aptamer based technologies. This review aims to give comprehensive information about BPs with summarizing most recent applications of electrochemical sensors for their determination in different samples.


Assuntos
Polímeros Molecularmente Impressos , Nanoestruturas , Compostos Benzidrílicos , Humanos , Fenóis
19.
Talanta ; 249: 123689, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35717750

RESUMO

In this work, pyrrole-histidine has been designed, synthesized and, used as a novel functional monomer to fabricate a molecularly imprinted electrochemical sensor for the selective and sensitive detection of teriflunomide (TER). The molecularly imprinted thin film of electrochemical sensor was constructed by directly electropolymerization of co-polymer of pyrrole-histidine (PyHis) with pyrrole in the presence of a template, TER, on a glassy carbon electrode (GCE). After electropolymerization, the structure and morphology of the fabricated MIP sensor were characterized by Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and its electrochemical parameters such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). The poly (pyrrole-co-pyrrole-histidine) [Poly (Py-co-PyHis)]@MIP/GCE sensor have a linear TER concentration in the of 0.1-1.0 pM with a low detection limit of 11.38 fM. The present strategy for electrochemical sensor have been also showed excellent recovery in synthetic serum samples and tablet dosage form with the recoveries 97.56% and 100.35%, respectively. The developed [Poly (Py-co-PyHis)]@MIP/GCE sensor exhibited an excellent electrochemical response for TER due to the synergistic effect of conducting polymer and molecularly imprinting techniques.


Assuntos
Impressão Molecular , Carbono/química , Crotonatos , Técnicas Eletroquímicas/métodos , Eletrodos , Histidina , Hidroxibutiratos , Limite de Detecção , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Nitrilas , Polímeros/química , Pirróis , Espectroscopia de Infravermelho com Transformada de Fourier , Toluidinas
20.
Daru ; 28(2): 673-684, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33089432

RESUMO

BACKGROUND: Platinum-based chemotherapy in non-small cell lung cancer (NSCLC) has been demonstrated as a promising approach by many researchers. However, due to low bioavailability and several side effects, drug targeting to lungs by intravenous administration is not a common route of administration. OBJECTIVE: In this study, oxaliplatin loaded polycaprolactone (PCL) nanoparticles were prepared to overcome the limitations of the drug. 33 factorial design was used to evaluate the combined effect of the selected variables on the nanoparticle characteristics and to optimize oxaliplatin loaded PCL nanoparticles. METHODS: The factorial design was used to study the influence of three different independent variables on the response of nanoparticle particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The cellular uptakes of oxaliplatin loaded nanoparticles with different molecular weights of PCL were evaluated. Moreover, optimized nanoparticles were evaluated for their efficacy in non-small lung cancer using the SK-MES-1 cell line. RESULTS: In factorial design, it is found that the homogenization speed and surfactant ratio represented the main factors influencing particle size and PDI and did not seem to depend on the PCL ratio. While the cytotoxicity of free oxaliplatin and oxaliplatin loaded nanoparticles were similar in low drug doses (2.5 and 25 µg/mL), the cytotoxicity of oxaliplatin loaded nanoparticles on SK-MES-1 cell was found higher in higher doses (p < 0.05). Moreover, oxaliplatin nanoparticles formulated with different molecular weights of PCL did not show significant differences in cellular uptake in 1 h and 2 h. However, the uptake of PCL80000 NPs was found significantly greater than free oxaliplatin at 4 h (p < 0.05). CONCLUSION: Hence, the development of oxaliplatin loaded PCL nanoparticles can be a useful approach for effective NSCLC therapy. Development, optimization and in vitro evaluation of oxaliplatin loaded nanoparticles in non-small cell lung cancer.


Assuntos
Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Oxaliplatina/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Nanopartículas , Oxaliplatina/química , Oxaliplatina/farmacologia , Tamanho da Partícula , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA