Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806339

RESUMO

The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 µm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 µm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1ß) were higher compared to larger titanium. Specifically, particles of 15 µm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.


Assuntos
Implantes Dentários , Titânio , Citocinas , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície , Titânio/análise
2.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955903

RESUMO

This study aimed to find the optimum mechanical characteristics of the restorative materials for the manufacture of implant crowns subjected to impact loading when different combinations of materials are used for the inner and outer crown. Several combinations of external-internal crown restorative materials were analyzed. The dynamic stresses at eight different zones of a dental implant subjected to an impact load and the influence of several mechanical properties, such as the Young's modulus, Poisson's ratio, density, and initial velocity, were analyzed and compared. A detailed 3D model was created, including the crown, the retention screw, the implant, and a mandible section. The model was then built by importing the 3D geometries from CAD software. The whole 3D model was carefully created in order to guarantee a finite element mesh that produced results adjusted to physical reality. Then, we conducted a numerical simulation using the finite element method (FEM). The results of the FEM analysis allowed for evaluating the effect that different combinations of restorative materials and mechanical properties had on the stress distribution in various regions of the implant. The choice of restorative material is a factor to be considered in order to preserve the integrity of osseointegration. Restorative materials transfer more or less stress to the dental implant and surrounding bone, depending on their stiffness. Therefore, an inadequate Young's modulus of the rehabilitation material can affect the survival of the implant over time. Eight interactive graphics were provided on a web-based surface platform to help clinical dentists, researchers, and manufacturers to select the best restorative materials combination for the crown.


Assuntos
Implantes Dentários , Simulação por Computador , Coroas , Análise de Elementos Finitos , Mandíbula , Estresse Mecânico
3.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277204

RESUMO

The surface modifications of titanium dental implants play important roles in the enhancement of osseointegration. The objective of the present study was to test two different implant surface treatments on a rabbit model to investigate the osseointegration. The tested surfaces were: a) acid-etched surface with sandblasting treatment (SA) and b) an oxidized implant surface (OS). The roughness was measured by an interferometeric microscope with white light and the residual stress of the surfaces was measured with X-ray residual stress Bragg-Bentano diffraction. Six New Zealand white rabbits were used for the in vivo study. Implants with the two different surfaces (SA and OS) were inserted in the femoral bone. After 12 weeks of implantation, histological and histomorphometric analyses of the blocks containing the implants and the surrounding bone were performed. All the implants were correctly implanted and no signs of infection were observed. SA and OS surfaces were both surrounded by newly formed trabeculae. Histomorphometric analysis revealed that the bone-implant contact % (BIC) was higher around the SA implants (53.49 ± 8.46) than around the OS implants (50.94 ± 16.42), although there were no significant statistical differences among them. Both implant surfaces (SA and OS) demonstrated a good bone response with significant amounts of newly formed bone along the implant surface after 12 weeks of implantation. These results confirmed the importance of the topography and physico-chemical properties of dental implants in the osseointegration.


Assuntos
Implantação Dentária Endóssea/métodos , Implantes Dentários , Osseointegração , Titânio , Animais , Feminino , Fêmur/cirurgia , Implantes Experimentais , Coelhos , Propriedades de Superfície
4.
Clin Oral Investig ; 22(3): 1423-1432, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29022215

RESUMO

OBJECTIVES: The objective of this study was to assess, by histomorphometric analysis, the degree of bone apposition on two types of dental implant's surfaces: a novel implant that combines Al2O3 abrasive particle blasting with thermochemical treatment (ContacTi), compared to a standard surface treatment obtained by sandblasting and acid etching (shot blasting). MATERIALS AND METHODS: Twelve minipigs were used, placing the studied implants in the maxillae, and divided into three groups according to the time of sacrifice: 2, 4, and 8 weeks after implant placement. Histological and histomorphometric analyses were performed following standardized tissue polymerization, cutting, and staining and examined under optical and high-resolution electron microscope. RESULTS: For all measurements, the novel surface presented higher levels of osseointegration as compared to the shot blasting surface. Bone to implant contact (BIC) in the maxillae for ContacTi presented values of 49.02, 83.20, and 85.58% at 2, 4, and 8 weeks, respectively, significantly higher compared to the shot blasting surface values of 39.32, 46.53, and 46.20% for the same time points. Bone area density (BAD) presented values of 26.52, 61.21, and 59.50% for ContacTi surface implants and 22.95, 36.26, and 49.50% for the shot blasted surface implants. Signs of osteoconductivity were observed in the ContacTi surfaces at 2 weeks. CONCLUSIONS: The ContacTi surface achieved a faster growth of hard tissues around the implants, when compared to the shot blasting surface, and for all evaluated histomorphometric parameters, the values were higher at all measured time points. CLINICAL RELEVANCE: ContacTi could be a new surface improving the osseointegration in oral implantology.


Assuntos
Interface Osso-Implante/fisiologia , Implantes Dentários , Planejamento de Prótese Dentária , Osseointegração/fisiologia , Condicionamento Ácido do Dente , Abrasão Dental por Ar , Óxido de Alumínio , Animais , Feminino , Maxila , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Suínos , Porco Miniatura , Titânio
5.
J Mater Sci Mater Med ; 27(10): 151, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27582071

RESUMO

Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 µm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.


Assuntos
Osteoblastos/metabolismo , Óxidos/química , Titânio/química , Animais , Materiais Biocompatíveis/química , Força Compressiva , Módulo de Elasticidade , Feminino , Fricção , Teste de Materiais , Microscopia Eletrônica de Varredura , Porosidade , Pós , Próteses e Implantes , Desenho de Prótese , Coelhos , Análise Espectral Raman , Estresse Mecânico , Propriedades de Superfície , Temperatura
6.
Materials (Basel) ; 17(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124410

RESUMO

This study has been carried out to analyze the influence of the design of three geometric elements (wall thickness, platform width, and chamfer) of Ti-base abutments on the distribution of stresses and strains on the implant, the retention screw, the Ti base, and the bone. This study was carried out using FEA, analyzing eight different Ti-base models based on combinations of the geometric factors under study. The model was adapted to the standard Dynamic Loading Test For Endosseous Dental Implants. A force of 360 N with a direction of 30° was simulated and the maximum load values were calculated for each model, which are related to a result higher than the proportional elastic limit of the implant. The transferred stresses according to von Mises and microdeformations were measured for all the alloplastic elements and the simulated support bone, respectively. These results were validated with a static load test using a creep testing machine. The results show that the design factors involved with the most appropriate stress distribution are the chamfer, a thick wall, and a narrow platform. A greater thickness (0.4 mm) is also related to lower stress values according to von Mises at the level of the retaining screws. In general, the distributions of tension at the implants and microdeformation at the level of the cortical and trabecular bone are similar in all study models. The in vitro study on a Ti-base control model determined that the maximum load before the mechanical failure of the implant is 360 N, in accordance with the results obtained for all the Ti-base designs analyzed in the FEA. The results of this FEA study show that modifications to the Ti-base design influence the biomechanical behavior and, ultimately, the way in which tension is transferred to the entire prosthesis-implant-bone system.

7.
Colloids Surf B Biointerfaces ; 241: 113994, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850744

RESUMO

Guided bone regeneration (GBR) is a widely used procedure that prevents the fast in-growth of soft tissues into bone defect. Among the different types of membranes, the use of collagen membranes is the gold standard. However, these membranes are implanted in tissue location where a severe acute inflammation will occur and can be negatively affected. The aim of this study was to develop a collagen-based membrane for GBR that incorporated alginate-hydroxyapatite microparticles. Membranes were manufactured using collagen type I and gelatin and alginate-hydroxyapatite microparticles. Membranes were assessed in terms of topography by scanning electron microscopy and confocal microscopy; stability by swelling after an overnight incubation in saline and enzymatic degradation against collagenase and mechanical properties by tensile tests. Furthermore, the biological response was assessed with SaOs-2 cells and THP-1 macrophages to determine alkaline phosphatase activity and inflammatory cytokine release. Our results showed that the incorporation of different percentages of these microparticles could induce changes in the surface topography. When the biological response was analyzed, either membranes were not cytotoxic to THP-1 macrophages or to SaOs-2 cells and they did not induce the release of pro-inflammatory cytokines. However, the different surface topographies did not induce changes in the macrophage morphology and the release of pro- and anti-inflammatory cytokines, suggesting that the effect of surface roughness on macrophage behavior could be dependent on other factors such as substrate stiffness and composition. Collagen-gelatin membranes with embedded alginate-hydroxyapatite microparticles increased ALP activity, suggesting a positive effect of them on bone regeneration, remaining unaffected the release of pro- and anti-inflammatory cytokines.


Assuntos
Alginatos , Regeneração Óssea , Durapatita , Inflamação , Osteoblastos , Regeneração Óssea/efeitos dos fármacos , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Durapatita/química , Durapatita/farmacologia , Alginatos/química , Inflamação/patologia , Propriedades de Superfície , Gelatina/química , Macrófagos/metabolismo , Regeneração Tecidual Guiada/métodos , Membranas Artificiais , Tamanho da Partícula , Citocinas/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia
8.
J Dent ; 149: 105270, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084546

RESUMO

OBJECTIVE: Most endodontic diseases are bacterium-mediated inflammatory or necrotic process induced by contaminated dental pulp. Although great advances are being performed to obtain more efficient antibacterial strategies for persistent infections, most studies lack of representative models to test their antibacterial effects and their outcomes cannot be promptly translated to clinical practice. Therefore, this study aimed to refine an ex vivo endodontic biofilm model combining human tooth, computer guided design and 3D printing to obtain a more reproducible and predictable model. METHODS: Monoradicular teeth were cut using three different methods: hand-held (HCC), mechanical precision (MPC) and computer aid guided cutting (CGC). Then, blocks were reassembled. The different model preparations were assessed in terms of dimensional tolerance, surface analysis, liquid tightness and Enterococcus faecalis biofilm development for 21 days, which was studied by metabolic assays and confocal microscopy. Then, the proposed model was validated using different commercial disinfecting treatments. RESULTS: CGC exhibited significantly lower deviation and surface without defects compared to HHC and MPC, leading to superior liquid tightness. Similarly, mature biofilms with high metabolic activity and vitality were observed in all conditions, CGC showing the lowest variation. Regarding the model validation, all antibacterial treatments resulted in the complete eradication of bacteria in the standard 2D model, whereas commercial treatments exhibited varying levels of efficacy in the proposed ex vivo model, from moderately reduction of metabolic activity to complete elimination of biofilm. CONCLUSIONS: The novel guided approach represents a more reliable, standardized, and reproducible model for the evaluation of endodontic disinfecting therapies. CLINICAL SIGNIFICANCE: During antibacterial treatment development, challenging 3D models using teeth substrates to test antibacterial treatments novel guided approach represents a more reliable, standardized, and reproducible model for the evaluation of endodontic disinfecting therapies.


Assuntos
Biofilmes , Desenho Assistido por Computador , Enterococcus faecalis , Biofilmes/efeitos dos fármacos , Humanos , Enterococcus faecalis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Impressão Tridimensional , Microscopia Confocal , Cavidade Pulpar/microbiologia , Polpa Dentária/microbiologia
9.
J Mater Sci Mater Med ; 24(2): 381-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23104087

RESUMO

A bone inspired material was obtained by incorporating collagen in the liquid phase of an α-tricalcium phosphate cement, either in solubilized or in fibrilized form. This material was able to set in situ, giving rise to a calcium deficient hydroxyapatite (CDHA)/collagen composite. The morphology and distribution of collagen in the composite was shown to be strongly affected by the collagen pre-treatment. The interactions between collagen and the inorganic phase were assessed by FTIR. A red shift of the amide I band was indicative of calcium chelation by the collagen carbonyl groups. The rate of CDHA formation was not affected when diluted collagen solutions (1 mg/ml) were used, whereas injectability improved. The presence of solubilized collagen, even in low amount (1 %), increased cell adhesion and proliferation on the composites. Still in the absence of osteogenic medium, significant ALP activity was detected both in the inorganic and the collagen-containing cements. The maximum ALP activity was advanced in the collagen-containing cement as compared to the inorganic cement.


Assuntos
Cimentos Ósseos/síntese química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Colágeno/química , Osteoblastos/efeitos dos fármacos , Apatitas/administração & dosagem , Apatitas/síntese química , Apatitas/química , Apatitas/farmacologia , Fenômenos Biomecânicos/efeitos dos fármacos , Cimentos Ósseos/química , Fosfatos de Cálcio/administração & dosagem , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/administração & dosagem , Colágeno/síntese química , Colágeno/farmacologia , Combinação de Medicamentos , Durapatita/administração & dosagem , Durapatita/síntese química , Durapatita/química , Durapatita/farmacologia , Humanos , Injeções , Teste de Materiais , Minerais/síntese química , Minerais/química , Minerais/farmacologia , Osteoblastos/fisiologia
10.
Materials (Basel) ; 16(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37109795

RESUMO

One of the main problems in oral implantology today is peri-implantitis, which affects almost 20% of dental implants placed in patients. One of the most commonly used techniques to eliminate bacterial biofilm is the implantoplasty, that consists of the mechanical modification of the implant surface topography followed by treatments with chemical reagents for decontamination. In this study, the main aim is to evaluate the use of two different chemical treatments based on hypochlorous acid (HClO) and hydrogen peroxide (H2O2). For this purpose, 75 titanium grade 3 discs were treated with implantoplasty according to established protocols. Twenty-five discs were used as controls, 25 were treated with concentrated HClO and 25 were treated with concentrated HClO followed by treatment with 6% H2O2. The roughness of the discs was determined using the interferometric process. Cytotoxicity with SaOs-2 osteoblastic cells was quantified at 24 and 72 h, whereas bacteria proliferation using S. gordonii and S. oralis bacteria was quantified at 5 s and 1 min of treatment. The results showed an increase in the roughness values, the control discs had an Ra of 0.33 µm and those treated with HClO and H2O2 reached 0.68 µm. Cytotoxicity was present at 72 h, together with a significant proliferation of bacteria. These biological and microbiological results can be attributed to the roughness produced by the chemical agents that triggered bacterial adsorption while inhibiting osteoblast adhesion. The results indicate that even if this treatment can decontaminate the titanium surface after implantation, the produced topography will generate an environment that will not favor long-term performance.

11.
Acta Biomater ; 166: 14-41, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302735

RESUMO

It is widely known that bone has intrinsic capacity to self-regenerate after injury. However, the physiological regeneration process can be impaired when there is an extensive damage. One of the main reasons is due to the inability to establish a new vascular network that ensures oxygen and nutrient diffusion, leading to a necrotic core and non-junction of bone. Initially, bone tissue engineering (BTE) emerged to use inert biomaterials to just fill bone defects, but it eventually evolved to mimic bone extracellular matrix and even stimulate bone physiological regeneration process. In this regard, the stimulation of osteogenesis has gained a lot of attention especially in the proper stimulation of angiogenesis, being critical to achieve a successful osteogenesis for bone regeneration. Besides, the immunomodulation of a pro-inflammatory environment towards an anti-inflammatory one upon scaffold implantation has been considered another key process for a proper tissue restoration. To stimulate these phases, growth factors and cytokines have been extensively used. Nonetheless, they present some drawbacks such as low stability and safety concerns. Alternatively, the use of inorganic ions has attracted higher attention due to their higher stability and therapeutic effects with low side effects. This review will first focus in giving fundamental aspects of initial bone regeneration phases, focusing mainly on inflammatory and angiogenic ones. Then, it will describe the role of different inorganic ions in modulating the immune response upon biomaterial implantation towards a restorative environment and their ability to stimulate angiogenic response for a proper scaffold vascularization and successful bone tissue restoration. STATEMENT OF SIGNIFICANCE: The impairment of bone tissue regeneration when there is excessive damage has led to different tissue engineered strategies to promote bone healing. Significant importance has been given in the immunomodulation towards an anti-inflammatory environment together with proper angiogenesis stimulation in order to achieve successful bone regeneration rather than stimulating only the osteogenic differentiation. Ions have been considered potential candidates to stimulate these events due to their high stability and therapeutic effects with low side effects compared to growth factors. However, up to now, no review has been published assembling all this information together, describing individual effects of ions on immunomodulation and angiogenic stimulation, as well as their multifunctionality or synergistic effects when combined together.


Assuntos
Regeneração Óssea , Osteogênese , Osso e Ossos , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual , Íons/farmacologia , Imunomodulação , Alicerces Teciduais
12.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676422

RESUMO

Bone grafting is one of the most commonly performed treatments for bone healing or repair. Autografts, grafts from the same patient, are the most frequently used bone grafts because they can provide osteogenic cells and growth factors at the site of the implant with reduced risk of rejection or transfer of diseases. Nevertheless, this type of graft presents some drawbacks, such as pain, risk of infection, and limited availability. For this reason, synthetic bone grafts are among the main proposals in regenerative medicine. This branch of medicine is based on the development of new biomaterials with the goal of increasing bone healing capacity and, more specifically in dentistry, they aim at simultaneously preventing or eliminating bacterial infections. The use of fibers made of chitosan (CS) and hydroxyapatite (HA) loaded with an antibiotic (doxycycline, DX) and fabricated with the help of an injection pump is presented as a new strategy for improving maxillary bone regeneration. In vitro characterization of the DX controlled released from the fibers was quantified after mixing different amounts of HA (10-75%). The 1% CS concentration was stable, easy to manipulate and exhibited adequate cuttability and pH parameters. The hydroxyapatite concentration dictated the combined fast and controlled release profile of CSHA50DX. Our findings demonstrate that the CS-HA-DX complex may be a promising candidate graft material for enhancing bone tissue regeneration in dental clinical practice.

13.
ACS Appl Mater Interfaces ; 15(25): 29729-29742, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319328

RESUMO

Soft tissue defects or pathologies frequently necessitate the use of biomaterials that provide the volume required for subsequent vascularization and tissue formation as autrografts are not always a feasible alternative. Supramolecular hydrogels represent promising candidates because of their 3D structure, which resembles the native extracellular matrix, and their capacity to entrap and sustain living cells. Guanosine-based hydrogels have emerged as prime candidates in recent years since the nucleoside self-assembles into well-ordered structures like G-quadruplexes by coordinating K+ ions and π-π stacking, ultimately forming an extensive nanofibrillar network. However, such compositions were frequently inappropriate for 3D printing due to material spreading and low shape stability over time. Thus, the present work aimed to develop a binary cell-laden hydrogel capable of ensuring cell survival while providing enough stability to ensure scaffold biointegration during soft tissue reconstruction. For that purpose, a binary hydrogel made of guanosine and guanosine 5'-monophosphate was optimized, rat mesenchymal stem cells were entrapped, and the composition was bioprinted. To further increase stability, the printed structure was coated with hyperbranched polyethylenimine. Scanning electron microscopic studies demonstrated an extensive nanofibrillar network, indicating excellent G-quadruplex formation, and rheological analysis confirmed good printing and thixotropic qualities. Additionally, diffusion tests using fluorescein isothiocyanate labeled-dextran (70, 500, and 2000 kDa) showed that nutrients of various molecular weights may diffuse through the hydrogel scaffold. Finally, cells were evenly distributed throughout the printed scaffold, cell survival was 85% after 21 days, and lipid droplet formation was observed after 7 days under adipogenic conditions, indicating successful differentiation and proper cell functioning. To conclude, such hydrogels may enable the 3D bioprinting of customized scaffolds perfectly matching the respective soft tissue defect, thereby potentially improving the outcome of the tissue reconstruction intervention.


Assuntos
Bioimpressão , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Guanosina Monofosfato , Guanosina , Materiais Biocompatíveis , Engenharia Tecidual , Impressão Tridimensional , Alicerces Teciduais/química
14.
J Mech Behav Biomed Mater ; 148: 106163, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832172

RESUMO

The polymeric nanofiber may interact and control certain regeneration processes at the molecular level to repair damaged tissues. This research focuses on the development of characterization and antibacterial capabilities of polyvinyl alcohol (PVA)/chitosan (CS) nanofibres containing fucoidan (FUC) for tissue engineering as a skin tissue substitute. A control group consisting of 13% PVA/(0.1)% CS nanofiber was prepared. To confer antibacterial properties to the nanofiber, 10, 20, and 30 mg of FUC were incorporated into this control group. The scanning electron microscope (SEM) proved the homogeneous and beadless structures of the nanofibers. The antibacterial activity of the 13% PVA/(0.1)% CS/(10, 20, 30) FUC was tested against the S.aureus and E.coli and the results showed that with FUC addition, the antibacterial activities of the nanofibers increased. The biocompatibility test was performed with a fibroblast cell line for 1, 3, and 7 days of incubation and the results demonstrated that FUC addition enhanced the bioactivity of the 13% PVA/(0.1)% CS nanofibers. In addition, the biocompatibility results showed that 13% PVA/(0.1)% CS/10 FUC had the highest viability value for all incubation periods compared to the others. In addition, the tensile test results showed that; the maximum tensile strength value was observed for 13% PVA/(0.1)% CS/10 FUC nanofibers.


Assuntos
Quitosana , Nanofibras , Quitosana/química , Álcool de Polivinil/química , Nanofibras/química , Polivinil , Engenharia Tecidual , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli
15.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176435

RESUMO

The influence of the surface topography of dental implants has been studied to optimize titanium surfaces in order to improve osseointegration. Different techniques can be used to obtain rough titanium, however, their effect on wettability, surface energy, as well as bacterial and cell adhesion and differentiation has not been studied deeply. Two-hundred disks made of grade 4 titanium were subjected to different treatments: machined titanium (MACH), acid-attacked titanium (AE), titanium sprayed with abrasive alumina particles under pressure (GBLAST), and titanium that has been treated with GBLAST and then subjected to AE (GBLAST + AE). The roughness of the different treatments was determined by confocal microscopy, and the wettability was determined by the sessile drop technique; then, the surface energy of each treatment was calculated. Osteoblast-like cells (SaOs-2) were cultured, and alkaline phosphatase was determined using a colorimetric test. Likewise, bacterial strains S. gordonii, S. oralis, A. viscosus, and E. faecalis were cultured, and proliferation on the different surfaces was determined. It could be observed that the roughness of the GBLAST and GBLAS + AE was higher, at 1.99 and 2.13 µm of Ra, with respect to the AE and MACH samples, which were 0.35 and 0.20 µm, respectively. The abrasive treated surfaces showed lower hydrophilicity but lower surface energy. Significant differences could be seen at 21 days between SaOS-2 osteoblastic cell adhesion for the blasted ones and higher osteocalcin levels. However, no significant differences in terms of bacterial proliferation were observed between the four surfaces studied, demonstrating the insensitivity of bacteria to topography. These results may help in the search for the best topographies for osteoblast behavior and for the inhibition of bacterial colonization.

16.
Int J Pharm ; 648: 123627, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984620

RESUMO

Due to the high failure rates associated to endodontic disinfection, this study aimed to investigate the antibacterial properties of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with Ca(OH)2 for endodontic disinfection procedures. Ca(OH)2 NPs production and physicochemical characterization were carried out as well as multiple antibacterial tests using three bacterial strains and an ex vivo model of endodontic infection with extracted human teeth. Agar diffusion test and broth dilution determined the inhibition growth zones (n = 5) and the minimal inhibitory concentration (MIC, n = 5), respectively. Cell viability was assessed using Live/Dead staining with confocal microscopy (n = 5). Data was analysed using ANOVA followed by post-hoc analysis. After 24 h of incubation, Ca(OH)2 NPs demonstrated a MIC of 10 µg/mL for Porphyromonas gingivalis (p < 0.001) and Enterococcus faecalis and 5 µg/mL for Fusobacterium nucleatum (p < 0.001). Although the agar diffusion test did not exhibit any inhibition area for Ca(OH)2 nor for Ca(OH)2 NPs, this was probably due to the buffering effect of the agar medium. However, the antibacterial capacity was confirmed in an ex vivo model, where instrumentalized teeth were infected with Enterococcus Faecalis and treated after 28 days of culture. A significant reduction in bacterial metabolic activity was confirmed for Ca(OH)2 NPs (40 % reduction with a single dose) and confirmed by Live/Dead staining. In conclusion, Ca(OH)2-loaded PLGA NPs present promising antibacterial efficacy for endodontic disinfection procedures.


Assuntos
Hidróxido de Cálcio , Nanopartículas , Humanos , Hidróxido de Cálcio/farmacologia , Desinfecção , Ágar/farmacologia , Antibacterianos/farmacologia , Bactérias , Enterococcus faecalis
17.
World Neurosurg ; 173: 13-22, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36716852

RESUMO

INTRODUCTION: Metastatic spine tumors affect over 30% of patients who have been diagnosed with cancer. While techniques in surgical intervention have undoubtedly evolved, there are some pitfalls when spinal instrumentation is required for stabilization following tumor resection. However, the use of carbon fiber-reinforced polyetheretherketone (CFR-PEEK) implants has become increasingly popular due to improved radiolucency and positive osteobiologic properties. Here, we present a systematic review describing the use of CFR-PEEK-coated instrumentation in the oncologic population while identifying advantages and potential shortcomings of these devices. METHODS: In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review was conducted in March 2022 to identify articles detailing the use of CFR-PEEK implants for spinal instrumentation in patients with primary and secondary spine tumors. The search was performed using the PubMed, Scopus, and Embase databases. RESULTS: An initial search returned a total of 85 articles among the three databases used. After the exclusion of duplicates and screening of abstracts, 21 full-text articles were examined for eligibility. Eleven articles were excluded due to not fitting our inclusion and exclusion criteria. Ten articles were subsequently eligible for full-text review. CONCLUSIONS: CFR-PEEK possesses a similar safety and efficacy profile to titanium implants but has distinct advantages. It limits artifact, increases early detection of local tumor recurrence, increases radiotherapy dose accuracy, and is associated with low complication rates (9.96%)-making it a promising alternative for the demands unique to the treatment/outcome of spinal oncologic patients.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias da Medula Espinal , Neoplasias da Coluna Vertebral , Humanos , Fibra de Carbono , Polímeros , Benzofenonas , Polietilenoglicóis , Cetonas , Neoplasias da Coluna Vertebral/cirurgia , Carbono
18.
J Clin Med ; 11(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207298

RESUMO

The purpose of this research is to study the biomechanical response of dental implants in bone-level type locations, 0.5 mm above and below the bone level. In addition, the influence of the thickness of the cortical bone on osseointegration is determined due to the mechanical loads transfer from the dental implant to the cortical and trabecular bone. The thicknesses studied were 1.5 mm and 2.5 mm. Numerical simulations were performed using a finite element method (FEM)-based model. In order to verify the FEM model, the in silico results were compared with the results obtained from a histological analysis performed in an in vivo study with 30 New Zealand rabbits. FEM was performed using a computerized 3D model of bone-level dental implants inserted in the lower jawbone with an applied axial load of 100 N. The analysis was performed using different distances from the bone level and different thicknesses of cortical bone. The interface area of bone growth was evaluated by analyzing the bone-implant contact (BIC), region of interest (ROI) and total bone area (BAT) parameters obtained through an in vivo histological process and analyzed by scanning electron microscopy (SEM). Bone-level implants were inserted in the rabbit tibiae, with two implants placed per tibia. These parameters were evaluated after three or six weeks of implantation. FEM studies showed that placements 0.5 mm below the bone level presented lower values of stress distribution compared to the other studied placements. The lower levels of mechanical stress were then correlated with the in vivo studies, showing that this position presented the highest BIC value after three or six weeks of implantation. In this placement, vertical bone growth could be observed up the bone level. The smallest thickness of the study showed a better transfer of mechanical loads, which leads to a better osseointegration. In silico and in vivo results both concluded that the implants placed 0.5 mm below the cortical bone and with lower thicknesses presented the best biomechanical and histological behavior in terms of new bone formation, enhanced mechanical stability and optimum osseointegration.

19.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009326

RESUMO

OBJECTIVES: The purpose of this work was to determine the influence of residual alumina after sand blasting treatment in titanium dental implants. This paper studied the effect of alumina on physico-chemical surface properties, such as: surface wettability, surface energy. Osseointegration and bacteria adhesion were determined in order to determine the effect of the abrasive particles. MATERIALS AND METHODS: Three surfaces were studied: (1) as-received, (2) rough surface with residual alumina from sand blasting on the surface and (3) with the same roughness but without residual alumina. Roughness was determined by white light interferometer microscopy. Surface wettability was evaluated with a contact angle video-based system and the surface free energy by means of Owens and Wendt equation. Scanning electron microscopy equipped with microanalysis was used to study the morphology and determine the chemical composition of the surfaces. Bacteria (Lactobacillus salivarius and Streptococcus sanguinis) were cultured in each surface. In total, 110 dental implants were placed into the bone of eight minipigs in order to compare the osseointegration. The percentage of bone-to-implant contact was determined after 4 and 6 weeks of implantation with histometric analysis. RESULTS: The surfaces with residual alumina presented a lower surface free energy than clean surfaces. The in vivo studies demonstrated that the residual alumina accelerated bone tissue growth at different implantation times, in relation to clean dental implants. In addition, residual alumina showed a bactericidal effect by decreasing the quantity of bacteria adhering to the titanium. CONCLUSIONS: It is possible to verify the benefits that the alumina (percentages around 8% in weight) produces on the surface of titanium dental implants. CLINICAL RELEVANCE: Clinicians should be aware of the benefits of sand-blasted alumina due to the physico-chemical surface changes demonstrated in in vivo tests.

20.
Front Bioeng Biotechnol ; 9: 617724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585434

RESUMO

Failure of corneal endothelium cell monolayer is the main cause leading to corneal transplantation. Autologous cell-based therapies are required to reconstruct in vitro the cell monolayer. Several strategies have been proposed using embryonic stem cells and induced pluripotent stem cells, although their use has ethical issues as well as limited clinical applications. For this purpose, we propose the use of dental pulp stem cells isolated from the third molars to form the corneal endothelium cell monolayer. We hypothesize that using dental pulp stem cells that share an embryological origin with corneal endothelial cells, as they both arise from the neural crest, may allow a direct differentiation process avoiding the use of reprogramming techniques, such as induced pluripotent stem cells. In this work, we report a two-step differentiation protocol, where dental pulp stem cells are derived into neural crest stem-like cells and, then, into corneal endothelial-like cells. Initially, for the first-step we used an adhesion culture and compared two initial cell sources: a direct formation from dental pulp stem cells with the differentiation from induced pluripotent stem cells. Results showed significantly higher levels of early stage marker AP2 for the dental pulp stem cells compared to induced pluripotent stem cells. In order to provide a better environment for neural crest stem cells generation, we performed a suspension method, which induced the formation of neurospheres. Results showed that neurosphere formation obtained the peak of neural crest stem cell markers expression after 4 days, showing overexpression of AP2, Nestin, and p75 markers, confirming the formation of neural crest stem-like cells. Furthermore, pluripotent markers Oct4, Nanog, and Sox2 were as well-upregulated in suspension culture. Neurospheres were then directly cultured in corneal endothelial conditioned medium for the second differentiation into corneal endothelial-like cells. Results showed the conversion of dental pulp stem cells into polygonal-like cells expressing higher levels of ZO-1, ATP1A1, COL4A2, and COL8A2 markers, providing a proof of the conversion into corneal endothelial-like cells. Therefore, our findings demonstrate that patient-derived dental pulp stem cells may represent an autologous cell source for corneal endothelial therapies that avoids actual transplantation limitations as well as reprogramming techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA