Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 86(6): 1571-1583, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37256742

RESUMO

Phenylphenalenones (PPs) are phytoalexins protecting banana plants (Musaceae) against various pathogens. However, how plants synthesize PPs is still poorly understood. In this work, we investigated the major secondary metabolites of developing seed coats of Musella lasiocarpa to determine if this species might be a good model system to study the biosynthesis of PPs. We found that PPs are major components of M. lasiocarpa seed coats at middle and late developmental stages. Two previously undescribed PP dimers (M-4 and M-6) and a group of unreported diarylheptanoid (DH) derivatives named musellins A-F (B-7, B-9, B-10, B-12, B-14, and B-15) were isolated along with 14 known compounds. Musellin D (B-12) and musellin F (B-15) contain the first reported furo[3,2-c]pyran ring and represent a previously undescribed carbon skeleton. The chemical structures of all new compounds were characterized by spectroscopic data, including NMR, HRESIMS, and ECD analysis. Plausible biosynthetic pathways for the formation of PPs and DHs are proposed.


Assuntos
Musa , Musaceae , Fenalenos , Diarileptanoides , Estrutura Molecular , Musa/metabolismo , Fenalenos/química , Polímeros , Sementes
2.
Plant Physiol ; 176(3): 2496-2514, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371249

RESUMO

Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.


Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Celulose/metabolismo , Exorribonucleases/metabolismo , Simbiose/fisiologia , Trioses/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Exorribonucleases/genética , Regulação da Expressão Gênica de Plantas , Mutação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/metabolismo , Plântula/microbiologia , Transdução de Sinais
3.
Phytochemistry ; 115: 89-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25682510

RESUMO

The secondary metabolites in the roots, leaves and flowers of the common dandelion (Taraxacum officinale agg.) have been studied in detail. However, little is known about the specific constituents of the plant's highly specialized laticifer cells. Using a combination of liquid and gas chromatography, mass spectrometry and nuclear magnetic resonance spectrometry, we identified and quantified the major secondary metabolites in the latex of different organs across different growth stages in three genotypes, and tested the activity of the metabolites against the generalist root herbivore Diabrotica balteata. We found that common dandelion latex is dominated by three classes of secondary metabolites: phenolic inositol esters (PIEs), triterpene acetates (TritAc) and the sesquiterpene lactone taraxinic acid ß-D-glucopyranosyl ester (TA-G). Purification and absolute quantification revealed concentrations in the upper mgg(-1) range for all compound classes with up to 6% PIEs, 5% TritAc and 7% TA-G per gram latex fresh weight. Contrary to typical secondary metabolite patterns, concentrations of all three classes increased with plant age. The highest concentrations were measured in the main root. PIE profiles differed both quantitatively and qualitatively between plant genotypes, whereas TritAc and TA-G differed only quantitatively. Metabolite concentrations were positively correlated within and between the different compound classes, indicating tight biosynthetic co-regulation. Latex metabolite extracts strongly repelled D. balteata larvae, suggesting that the latex constituents are biologically active.


Assuntos
Látex/química , Taraxacum , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Lactonas/análise , Látex/metabolismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Raízes de Plantas/química , Sesquiterpenos/análise , Taraxacum/química , Taraxacum/genética , Taraxacum/crescimento & desenvolvimento , Taraxacum/metabolismo , Terpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA