Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Aust Orthod J ; 27(2): 132-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22372269

RESUMO

BACKGROUND: Difficulties are experienced with the collection and storage of freshly harvested human saliva to use as a lubricant for the laboratory testing of the frictional resistance of orthodontic brackets. In order to overcome these difficulties, researchers have suggested the use of saliva substitutes due to their ease of storage and consistency of properties throughout testing. Others have criticized the use of artificial saliva and prefer the dry state. The present study aimed to compare the effects of human saliva and an artificial saliva (Saliva Orthana) with the dry state for the static frictional resistance testing of orthodontic brackets. METHODS: The static frictional resistance and the lubrication effect of human saliva, Saliva Orthana and the dry state were investigated using upper central incisor stainless steel brackets and 0.019 x 0.025 inch stainless steel wires in an Instron Universal Testing Machine. Static frictional resistance was measured 100 times for each lubrication state. The 'wettability' of each lubricant was determined by measuring the contact angle against a stainless steel surface using the CAM 200 Optical Contact Angle Meter. Distilled water acted as a control. The viscosity of each lubricant and their Newtonian or non-Newtonian fluid behaviour under stress was measured using a Brookfield Digital Rheometer Model DV-III+. RESULTS: The differences in static frictional resistance between the three lubricants when examined as a group did not reach statistical significance (p = 0.059). The difference between human saliva and Saliva Orthana was considered to be of weak statistical significance and clinical relevance (Means: 0.917 N; 0.819 N: p = 0.053). Human saliva and the dry state revealed very similar mean frictional values (Means: 0.917 N; 0.875 N: p = 0.932). The contact angle tests indicated a statistically significant difference between the lubricants with Saliva Orthana having the smallest angle and therefore the highest 'wettability'. Human saliva had the highest initial viscosity and behaved as a non-Newtonian fluid, contrasting with Saliva Orthana and distilled water, both of which behaved as Newtonian fluids. CONCLUSION: The current results indicate that artificial saliva is not an ideal alternative to human saliva for friction testing in the laboratory The results therefore support the proposal that, when human saliva is not available, it may be preferable to test orthodontic frictional resistance in the dry state.


Assuntos
Lubrificantes/química , Braquetes Ortodônticos , Saliva Artificial/química , Saliva/fisiologia , Ligas Dentárias/química , Análise do Estresse Dentário/instrumentação , Fricção , Humanos , Hidrodinâmica , Teste de Materiais , Fios Ortodônticos , Aço Inoxidável/química , Estresse Mecânico , Propriedades de Superfície , Viscosidade , Água/química , Molhabilidade
2.
J Biomed Mater Res B Appl Biomater ; 103(7): 1424-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25404499

RESUMO

Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.


Assuntos
Materiais Revestidos Biocompatíveis/química , Vidro/química , Magnésio/química , Poliésteres/química , Propriedades de Superfície
3.
J Biomater Appl ; 29(5): 675-87, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25028389

RESUMO

Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.


Assuntos
Materiais Biocompatíveis/química , Magnésio/química , Fosfatos/química , Poliésteres/química , Cátions , Vidro/química , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Osteoblastos/metabolismo , Polímeros/química , Pressão , Estresse Mecânico , Resistência à Tração , Água/química
4.
Acta Biomater ; 5(7): 2525-39, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19410530

RESUMO

Light curable methacrylate dental monomers containing reactive calcium phosphate filler (monocalcium phosphate monohydrate (MCPM) with particle diameter of 29 or 90microm) and beta-tricalcium phosphate (beta-TCP) at 1:1 weight ratio in a powder:liquid ratio (PLR) of 1:1 or 3:1 and chlorhexidine diacetate (0 or 5 wt.%), were investigated. Upon light exposure, approximately 90% monomer conversion was gained irrespective of the formulation. Increasing the PLR promoted water sorption by the set material, induced expansion and enhanced calcium, phosphate and chlorhexidine release. Concomitantly, a decline in compressive and biaxial flexural strengths occurred. With a reduction in MCPM particle diameter, however, calcium and phosphate release was reduced and less deterioration in strength observed. After 24h, the remaining MCPM had reacted with water and beta-TCP, forming, within the set materials, brushite of lower solubility. This provided a novel means to control water sorption, component release and strength properties. Measurable chlorhexidine release was observed for 6weeks. Both diffusion rate and total percentage of chlorhexidine release decreased with lowering PLR or by adding buffer to the storage solutions. Higher chlorhexidine release was associated with reduced bacterial growth on agar plates and in a biofilm fermenter. In cell growth media, brushite and hydroxyapatite crystals precipitated on the composite material surfaces. Cells spread on both these crystals and the exposed polymer composite surfaces, indicating their cell compatibility. These formulations could be suitable antibacterial, biocompatible and remineralizing dental adhesives/liners.


Assuntos
Clorexidina/química , Materiais Dentários/química , Materiais Dentários/farmacologia , Implantes de Medicamento/síntese química , Cura Luminosa de Adesivos Dentários/métodos , Antibacterianos/administração & dosagem , Antibacterianos/química , Clorexidina/administração & dosagem , Difusão , Teste de Materiais
5.
J Orthod ; 35(2): 112-8; discussion 110, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18525074

RESUMO

OBJECTIVE: To determine the effects of static frictional resistance on varying the ligation technique in a Delta Force bracket system (Ortho Organizers Ltd, Hampton, UK) and using increasing degrees of bracket/archwire angulation to simulate binding. DESIGN: An ex vivo laboratory investigation using the Instron Universal Testing Machine (Instron Ltd, High Wycombe, UK) to generate sliding forces on an archwire through the Delta Force bracket. The system was lubricated with Saliva Orthana artificial saliva (Nycomed Ltd, Buckinghamshire, UK). SETTING: Biomaterials Laboratory, Eastman Dental Institute, London, UK. MATERIALS AND METHOD: Ninety Delta Force brackets were tested against 0.018-inch stainless steel wire. Three modes of ligation were tested with three different angulations: 0, 5 and 10 degrees to simulate increasing levels of binding. RESULTS: The average static frictional resistance went from 0.20 N, at 0 degrees angulation and minimum ligation, to 2.37 N with 10 degrees angulation and maximum ligation. Results revealed that the ligation pattern was found to be highly statistically significant (P<0.001) in influencing frictional force. The binding angle showed a trend of increasing frictional force with increasing bracket/archwire angulation. Repeatability testing showed no evidence of bias (P=0.171). CONCLUSIONS: These results suggest that the Delta Force variable ligation system does in fact enable friction to be varied, which may have implications in clinical application.


Assuntos
Braquetes Ortodônticos , Fios Ortodônticos , Análise do Estresse Dentário , Elastômeros/química , Fricção , Humanos , Ligadura/instrumentação , Lubrificação , Teste de Materiais , Saliva Artificial/química , Aço Inoxidável/química , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA