Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163411

RESUMO

The ability of Pluronic F127 (PF127) conjugated with tetrapeptide Gly-Arg-Gly-Asp (GRGD) as a sequence of Arg-Gly-Asp (RGD) peptide to form the investigated potential hydrogel (hereafter referred to as 3DG bioformer (3BE)) to produce spheroid, biocompatibility, and cell invasion ability, was assessed in this study. The fibroblast cell line (NIH 3T3), osteoblast cell line (MG-63), and human breast cancer cell line (MCF-7) were cultured in the 3BE hydrogel and commercial product (Matrigel) for comparison. The morphology of spheroid formation was evaluated via optical microscopy. The cell viability was observed through cell counting Kit-8 assay, and cell invasion was investigated via Boyden chamber assay. Analytical results indicated that 3BE exhibited lower spheroid formation than Matrigel. However, the 3BE appeared biocompatible to NIH 3T3, MG-63, and MCF-7 cells. Moreover, cell invasion ability and cell survival rate after invasion through the 3BE was displayed to be comparable to Matrigel. Thus, these findings demonstrate that the 3BE hydrogel has a great potential as an alternative to a three-dimensional cell culture for drug screening applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Hidrogéis/química , Oligopeptídeos/química , Poloxâmero/química , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
2.
Nanotechnology ; 23(33): 335703, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22863781

RESUMO

A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.


Assuntos
Implantes Dentários , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Análise de Variância , Calcificação Fisiológica , Cálcio/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Humanos , Nanoestruturas/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/fisiologia , Fosfatos/metabolismo , Engenharia Tecidual
3.
IEEE Trans Nanobioscience ; 15(7): 704-712, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28029616

RESUMO

Biomaterial design involves assessment of cellular response to nanotopography parameters such as shape, dimension of nanotopography features. Here, the effect of nanotopography alongside the in vivo factor, shear stress, on osteoblast cell behavior, is reported. Tantalum oxide nanodots of 50 or 100 nm diameter were engineered using anodized aluminum oxide as a template. Bare tantalum nitride coated silicon substrates were taken as control (flat). MG63 (osteoblast) cells were seeded for 72 hours on flat, 50 or 100 nm nanodots and modulation in cell morphology, cell viability and expression of integrins was studied. Cells displayed a well-extended morphology on 50 nm nanodots in contrast to an elongated morphology on 100 nm nanodots, as observed by scanning electron microscopy and immunofluorescence staining, thereby confirming the cellular response to different nanotopographies. Based on quantitative real-time polymerase chain reaction data, a greater fold change in the expression of α1 , α2 , α3 , α8 , α9 , [Formula: see text], ß1 , ß4 , ß5 , ß7 and ß8 integrins was observed in cells cultured on 100 nm than on 50 nm nanodots. Moreover, in the presence of a shear stress of 2 dyne/cm2, a 52% increase in the cell viability after culturing the cells for 72 hours was observed on 100 nm nanodots as compared to 50 nm nanodots, thereby validating the effect of shear stress on cell behavior. Duration-of-culture experiments revealed 100 nm nanodots to be an ideal nanotopography choice to engineer optimized implant geometries for an ideal cell response. This study highlights the in vivo factors which need to be considered while designing nanotopographies for in vivo applications, for an ideal response as the cell-nanomaterial interface. Applications in the field of Biomedical, tissue engineering and cancer research are expected.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanoestruturas/química , Osteoblastos/efeitos dos fármacos , Materiais Biocompatíveis/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Humanos , Nanoestruturas/ultraestrutura , Osteoblastos/citologia , Óxidos/química , Óxidos/farmacologia , Estresse Mecânico , Tantálio/química , Tantálio/farmacologia , Vinculina/metabolismo
4.
Biomaterials ; 34(4): 841-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131534

RESUMO

Nanotopography controls cell behaviours, such as cell adhesion and migration. However, the mechanisms responsible for topology-mediated cellular functions are not fully understood. A variety of nanopores was fabricated on 316L stainless steel to investigate the effects of spatial control on the growth and function of fibroblasts, the temporal regulation of integrins, and their effects on migration. The NIH-3T3 fibroblast cell line was cultured on the nanopore surfaces, whose pore diameters ranged from 40 to 210 nm. The 40 and 75 nm nanopores enhanced cell proliferation, focal adhesion formation and protein expression of vinculin and ß-tubulin after 24 h of incubation. Integrin expression was analysed by qPCR, which showed the extent of spatial and temporal regulation achieved by the nanopores. The protein expression of pERK1/2 was greatly attenuated in cells grown on 185 and 210 nm nanopore surfaces at 12 and 24 h. In summary, the 40 and 75 nm nanopore surfaces promoted cell adhesion and migration in fibroblasts by controlling the temporal expression of integrins and ERK1/2. The current study provides insight into the improvement of the design of stainless steel implants and parameters that affect biocompatibility. The ability to regulate the expression of integrin and ERK1/2 using nanopore surfaces could lead to further applications of surface modification in the fields of biomaterials science and tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Movimento Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Integrinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Nanoestruturas/química , Aço Inoxidável/química , Animais , Teste de Materiais , Camundongos , Células NIH 3T3 , Nanoestruturas/ultraestrutura , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA