Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(14): 9999-10009, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749650

RESUMO

Here, we evaluate for the first time the performances of the newly developed laser direct infrared (LDIR) technique and propose an optimization of the initial protocol for marine microplastics (MPs) analysis. Our results show that an 8 µm porosity polycarbonate filter placed on a Kevley slide enables preconcentration and efficient quantification of MPs, as well as polymer and size determination of reference plastic pellets of polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), with recoveries ranging from 80-100% and negligible blank values for particle sizes ranging from 200 to 500 µm. A spiked experiment using seawater, sediment, mussels, and fish stomach samples showed that the method responded linearly with significant slopes (R2 ranging from 0.93-1.0; p < 0.001, p < 0.01). Overall, 11 polymer types were identified with limited handling and an analysis time of ca. 3 h for most samples and 6 h for complex samples. Application of this technique to Mediterranean marine samples (seawater, sediment, fish stomachs and mussels) indicated MP concentrations and size distribution consistent with the literature. A high predominance of PVC (sediment, fish stomachs) and PE and PP (seawater, mussels) was observed in the analyzed samples.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Peixes , Lasers , Plásticos/análise , Polietileno/análise , Polímeros , Polipropilenos/análise , Cloreto de Polivinila , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 300: 118988, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157937

RESUMO

Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Peixes , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA