Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 28(7): 1376-84, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17134749

RESUMO

Resorbable porous ceramic constructs, based on silicon-stabilized tricalcium phosphate, were implanted in critical-size defects of sheep tibias, either alone or after seeding with bone marrow stromal cells (BMSC). Only BMSC-loaded ceramics displayed a progressive scaffold resorption, coincident with new bone deposition. To investigate the coupled mechanisms of bone formation and scaffold resorption, X-ray computed microtomography (muCT) with synchrotron radiation was performed on BMSC-seeded ceramic cubes. These were analyzed before and after implantation in immunodeficient mice for 2 or 6 months. With increasing implantation time, scaffold thickness significantly decreased while bone thickness increased. The muCT data evidenced that all scaffolds showed a uniform density distribution before implantation. Areas of different segregated densities were instead observed, in the same scaffolds, once seeded with cells and implanted in vivo. A detailed muX-ray diffraction analysis revealed that only in the contact areas between deposited bone and scaffold, the TCP component of the biomaterial decreased much faster than the HA component. This event did not occur at areas away from the bone surface, highlighting coupling and cell-dependency of the resorption and matrix deposition mechanisms. Moreover, in scaffolds implanted without cells, both the ceramic density and the TCP:HA ratio remained unchanged with respect to the pre-implantation analysis.


Assuntos
Materiais Biocompatíveis , Células da Medula Óssea/citologia , Substitutos Ósseos , Animais , Fosfatos de Cálcio , Cerâmica , Estabilidade de Medicamentos , Feminino , Teste de Materiais , Modelos Animais , Osseointegração , Osteogênese , Próteses e Implantes , Ovinos , Silício , Células Estromais/citologia , Fatores de Tempo , Engenharia Tecidual , Tomografia Computadorizada por Raios X , Difração de Raios X
2.
J Tissue Eng Regen Med ; 7(3): 183-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22095721

RESUMO

Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell-seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSCs) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSCs directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSCs under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non-crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.


Assuntos
Células da Medula Óssea/citologia , Colágeno/química , Perfusão/métodos , Alicerces Teciduais/química , Adulto , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Fosfatos de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Separação Celular , Células Cultivadas , Humanos , Implantes Experimentais , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Ácidos Nucleicos/metabolismo , Poliésteres/farmacologia , Porosidade , Ratos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
3.
Biotechnol Bioeng ; 98(1): 271-81, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17657771

RESUMO

Resorbable ceramic scaffolds based on Silicon stabilized tricalcium phosphate (Si-TCP) were seeded with bone marrow stromal cells (BMSC) and ectopically implanted for 2, 4, and 6 months in immunodeficient mice. Qualitative and quantitative evaluation of the scaffold material was performed by X-ray synchrotron radiation computed microtomography (microCT) with a spatial resolution lower than 5 microm. Unique to these experiments was that microCT data were first collected on the scaffolds before implantation and then on the same scaffolds after they were seeded with BMSC, implanted in the mice and rescued after different times. Volume fraction, mean thickness and thickness distribution were evaluated for both new bone and scaffold phases as a function of the implantation time. New bone thickness increased from week 8 to week 16. Data for the implanted scaffolds were compared with those derived from the analysis of the same scaffolds prior to implantation and with data derived from 100% hydroxyapatite (HA) scaffold treated and analyzed in the same way. At variance with findings with the 100% HA scaffolds a significant variation in the density of the different Si-TCP scaffold regions in the pre- and post-implantation samples was observed. In particular a post-implantation decrease in the density of the scaffolds, together with major changes in the scaffold phase composition, was noticeable in areas adjacent to newly formed bone. Histology confirmed a better integration between new bone and scaffold in the Si-TCP composites in comparison to 100% HA composites where new bone and scaffold phases remained well distinct.


Assuntos
Substitutos Ósseos/química , Fosfatos de Cálcio/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/diagnóstico por imagem , Osteoblastos/citologia , Osteoblastos/diagnóstico por imagem , Engenharia Tecidual/métodos , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Regeneração Tecidual Guiada/métodos , Cinética , Teste de Materiais , Camundongos , Camundongos Nus , Osteogênese/fisiologia , Porosidade , Ovinos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA