Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Pharm ; 650: 123720, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110014

RESUMO

Atorvastatin (ATV) is a first-line drug for the treatment of hyperlipidemia. This drug presents biopharmaceutical problems, partly due to its low solubility and dissolution rate. In this work, nanocrystals of ATV stabilized with Tween 80® were designed by wet milling. A full factorial design was applied to optimize the process. Additionally, a cryoprotectant agent (maltodextrin, MTX) was identified, which allowed maintaining the properties of the nanocrystals after lyophilization. The storage stability of the nanocrystals was demonstrated for six months in different conditions. The obtained nanocrystal powder was characterized using SEM, EDXS, TEM, DSC, TGA, FT-IR, and XRD, showing the presence of irregular crystals with semi-amorphous characteristics, likely due to the particle collision process. Based on the reduction in particle size and the decrease in drug crystallinity, a significant increase in water and phosphate buffer (pH 6.8) solubility by 4 and 6 times, respectively, was observed. On the other hand, a noticeable increase in the dissolution rate was observed, with 90 % of the drug dissolved within 60 min of study, compared to 30 % of the drug dissolved within 12 h in the case of the untreated drug or the physical mixture of components. Based on these results, it can be concluded that the nano-milling of Atorvastatin stabilized with Tween 80® is a promising strategy for developing new formulations with improved biopharmaceutical properties of this widely used drug.


Assuntos
Produtos Biológicos , Nanopartículas , Polissorbatos , Atorvastatina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Solubilidade , Nanopartículas/química , Liofilização , Tamanho da Partícula
2.
J Control Release ; 366: 548-566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211640

RESUMO

The lymphatic system possesses the main viral replication sites in the body following viral infection. Unfortunately, current antiretroviral agents penetrate the lymph nodes insufficiently when administered orally and, therefore, cannot access the lymphatic system sufficiently to interrupt this viral replication. For this reason, novel drug delivery systems aimed at enhancing the lymphatic uptake of antiretroviral drugs are highly desirable. Dissolving polymeric microarray patches (MAPs) may help to target the lymph intradermally. MAPs are intradermal drug delivery systems used to deliver many types of compounds. The present work describes a novel work investigating the lymphatic uptake of two anti-HIV drugs: cabotegravir (CAB) and rilpivirine (RPV) when delivered intradermally using dissolving MAPs containing nanocrystals of both drugs. Maps were formulated using NCs obtained by solvent-free milling technique. The polymers used to prepare the NCs of both drugs were PVA 10 Kda and PVP 58 Kda. Both NCs were submitted to the lyophilization process and reconstituted with deionized water to form the first layer of drug casting. Backing layers were developed for short application times and effective skin deposition. In vivo biodistribution profiles of RPV and CAB after MAP skin application were investigated and compared with the commercial intramuscular injection using rats. After a single application of RPV MAPs, a higher concentration of RPV was delivered to the axillary lymph nodes (AL) (Cmax 2466 ng/g - Tmax 3 days) when compared with RPV IM injection (18 ng/g - Tmax 1 day), while CAB MAPs delivered slightly lower amounts of drug to the AL (5808 ng/g in 3 days) when compared with CAB IM injection (9225 ng/g in 10 days). However, CAB MAPs delivered 7726 ng/g (Tmax 7 days) to the external lumbar lymph nodes, which was statistically equivalent to IM delivery (Cmax 8282 ng/g - Tmax 7 days). This work provides strong evidence that MAPs were able to enhance the delivery of CAB and RPV to the lymphatic system compared to the IM delivery route.


Assuntos
Dicetopiperazinas , Infecções por HIV , Piridonas , Rilpivirina , Animais , Ratos , Preparações Farmacêuticas , Distribuição Tecidual , Antirretrovirais , Polímeros
3.
Int J Pharm ; 639: 122968, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37080363

RESUMO

Nanodiamonds were combined with niosome, and resulting formulations were named as nanodiasomes, which were evaluated in terms of physicochemical features, cellular internalization, cell viability and transfection efficiency both in in vitro and in in vivo conditions. Such parameters were analyzed at 4 and 25 °C, and at 15 and 30 days after their elaboration. Nanodiasomes showed a particle size of 128 nm that was maintained over time inside the ± 10% of deviation, unless after 30 days of storage at 25 °C. Something similar occurred with the initial zeta potential value, 35.2 mV, being both formulations more stable at 4 °C. The incorporation of nanodiamonds into niosomes resulted in a 4-fold increase of transfection efficiency that was maintained over time at 4 and 25 °C. In vivo studies reported high transgene expression of nanodiasomes after subretinal and intravitreal administration in mice, when injected freshly prepared and after 30 days of storage at 4 °C.


Assuntos
Nanodiamantes , Ratos , Camundongos , Animais , Ratos Sprague-Dawley , Linhagem Celular , Retina/metabolismo , Lipossomos , Lipídeos
4.
Adv Drug Deliv Rev ; 201: 115055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597586

RESUMO

The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Humanos , Polímeros/farmacologia , Agulhas , Administração Cutânea
5.
ACS Appl Mater Interfaces ; 15(26): 31300-31319, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37349320

RESUMO

Transdermal drug delivery is an alternative route of administration that offers avoidance of the associated drawbacks of orally and parenterally administered hydrophobics. However, owing to the extremely specific set of physicochemical characteristics required for passive transdermal drug permeation, the development of marketed transdermal products containing poorly soluble drugs has been severely limited. Microarray patches (MAPs) are a type of transdermal patch that differ from the traditional patch design due to the presence of tiny, micron-sized needles that permit enhanced drug permeation on their application surface. To date, MAPs have predominantly been used to deliver hydrophilic compounds. However, this work challenges this trend and focuses on the use of MAPs, in combination with commonly utilized solubility-enhancing techniques, to deliver the hydrophobic drug olanzapine (OLP) across the skin. Specifically, cyclodextrin (CD) complexation and particle size reduction were employed in tandem with hydrogel-forming and dissolving MAPs, respectively. In vivo experimentation using a female Sprague-Dawley rat model confirmed the successful delivery of OLP from hydrogel-forming MAPs (Cmax = 611.13 ± 153.34 ng/mL, Tmax = 2 h) and dissolving MAPs (Cmax = 690.56 ± 161.33 ng/mL, Tmax = 2 h) in a manner similar to that of oral therapy in terms of the rate and extent of drug absorption, as well as overall drug exposure and bioavailability. This work is the first reported use of polymeric MAPs in combination with the solubility-enhancing techniques of CD complexation and particle size reduction to successfully deliver the poorly soluble drug OLP via the transdermal route. Accordingly, this paper provides significant evidence to support an expansion of the library of molecules amenable to MAP-mediated drug delivery to include those that exhibit poor aqueous solubility.


Assuntos
Polímeros , Pele , Ratos , Animais , Feminino , Olanzapina , Ratos Sprague-Dawley , Administração Cutânea , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis , Agulhas
6.
Drug Deliv ; 29(1): 1038-1048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35363100

RESUMO

Implantable drug delivery systems offer an alternative for the treatments of long-term conditions (i.e. schizophrenia, HIV, or Parkinson's disease among many others). The objective of the present work was to formulate implantable devices loaded with the model hydrophobic drug olanzapine (OLZ) using robocasting 3D-printing combined with a pre-formed rate controlling membrane. OLZ was selected as a model molecule due to its hydrophobic nature and because is a good example of a molecule used to treat a chronic condition schizophrenia. The resulting implants consisted of a poly(ethylene oxide) (PEO) implant coated with a poly(caprolactone) (PCL)-based membrane. The implants were loaded with 50 and 80% (w/w) of OLZ. They were prepared using an extrusion-based 3D-printer from aqueous pastes containing 36-38% (w/w) of water. The printing process was carried out at room temperature. The resulting implants were characterized by using infrared spectroscopy, scanning electron microscopy, thermal analysis, and X-ray diffraction. Crystals of OLZ were present in the implant after the printing process. In vitro release studies showed that implants containing 50% and 80% (w/w) of OLZ were capable of providing drug release for up to 190 days. On the other hand, implants containing 80% (w/w) of OLZ presented a slower release kinetics. After 190 days, total drug release was ca. 77% and ca. 64% for implants containing 50% and 80% (w/w) of OLZ, respectively. The higher PEO content within implants containing 50% (w/w) of OLZ allows a faster release as this polymer acts as a co-solvent of the drug.


Assuntos
Polímeros , Impressão Tridimensional , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas , Polímeros/química
7.
Int J Pharm ; 627: 122217, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36155790

RESUMO

Melanoma remains a global concern, but current therapies present critical limitations pointing out the urgent need for novel strategies. Among these, the cutaneous delivery of drugs selectively damaging cancer cells is highly attractive. Rose Bengal (RB) is a dye exhibiting selective cytotoxicity towards melanoma, but the high water solubility and low permeability hinder its therapeutic potential. We previously developed RB-loaded transfersomes (RBTF) to mediate the RB dermal delivery; however, a platform efficiently delivering RBTF in the deepest strata is essential for a successful therapeutic activity. In this regard, dissolving microneedles release the encapsulated cargo up to the dermis, painlessly piercing the outmost skin layers. Therefore, herein we developed and characterised a trilayer dissolving microneedle array (RBTF-TDMNs) loading RBTF to maximise RBTF intradermal delivery in melanoma management. RBTF-TDMNs were proven strong enough to pierce excised porcine skin and rapidly dissolve and deposit RBTF intradermally while maintaining their physicochemical properties. Also, 3D visualisation of the system itself and while penetrating the skin was performed by multi-photon microscopy. Finally, a dermatokinetic study showed that RBTF-TDMNs offered unique delivery efficiency advantages compared to RBTF dispersion and free drug-loaded TDMNs. The proposed RBTF-TDMNs represent a valuable potential adjuvant tool for the topical management of melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Suínos , Animais , Administração Cutânea , Rosa Bengala , Melanoma/tratamento farmacológico , Agulhas , Neoplasias Cutâneas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Pele , Polímeros , Água , Melanoma Maligno Cutâneo
8.
J Control Release ; 348: 771-785, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738464

RESUMO

Hydrogel-forming microarray patches (HF-MAPs) offer minimally invasive, pain-free and prolonged drug delivery. These devices are designed to be self-administered and self-disabling, avoiding contaminated sharps waste generation. Cabotegravir sodium (CAB-Na) is a poorly soluble anti- human immunodeficiency virus (HIV) drug for the treatment and pre-exposure prophylaxis of HIV infection that lends itself to depot formation following intradermal delivery but presents significant challenges when delivered via HF-MAPs, whose nature is aqueous. Herein, we have investigated, for the first time, the use of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) to enhance the solubility of CAB-Na, and its effect on intradermal delivery via HF-MAPs. Accordingly, tablet reservoirs containing CAB-Na and HP-ß-CD were formulated. These novel reservoirs were combined with two different HF-MAP formulations (MAP1 (Gantrez S97® + poly (ethylene glycol) 10,000 + Na2CO3) and MAP2 (poly (vinyl pyrrolidone) 58 kDa + poly (vinyl alcohol) 85-120 kDa + citric acid)) to form fully integrated MAP devices which were tested in both ex vivo and in vivo settings. Ex vivo skin deposition results for MAP1 and MAP2 showed that 141 ± 40 µg and 342 ± 34 µg of CAB-Na was deposited into 0.5 cm2 of excised neonatal porcine skin after 24 h, respectively. Based on these findings, the in vivo pharmacokinetics of MAP2 were investigated over 28 days using a Sprague-Dawley rat model. After 24 h patch application, MAP2 demonstrated an extended drug release profile and an observed Cmax of 53.4 ± 10.16 µg/mL, superior to that of an FDA-approved CAB-nanosuspension administered via intramuscular application (Cmax of 43.6 ± 5.3 µg/mL). Consequently, this tablet integrated MAP device is considered to be a viable option for the intradermal delivery of hydrophobic anti-HIV drugs.


Assuntos
Ciclodextrinas , Infecções por HIV , Profilaxia Pré-Exposição , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Dicetopiperazinas , Infecções por HIV/prevenção & controle , Humanos , Hidrogéis/uso terapêutico , Polietilenoglicóis/uso terapêutico , Profilaxia Pré-Exposição/métodos , Piridonas , Ratos , Ratos Sprague-Dawley , Sódio , Suínos
9.
ACS Appl Mater Interfaces ; 14(11): 13665-13677, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35289181

RESUMO

Nanodiamonds (NDs) are promising materials for gene delivery because of their unique physicochemical and biological features, along with their possibility of combination with other nonviral systems. Our aim was to evaluate the biophysical performance of NDs as helper components of niosomes, named nanodiasomes, to address a potential nonviral gene delivery nanoplatform for therapeutic applications in central nervous system (CNS) diseases. Nanodiasomes, niosomes, and their corresponding complexes, obtained after genetic material addition at different ratios (w/w), were evaluated in terms of physicochemical properties, cellular uptake, intracellular disposition, biocompatibility, and transfection efficiency in HEK-293 cells. Nanodiasomes, niosomes, and complexes fulfilled the physicochemical features for gene therapy applications. Biologically, the incorporation of NDs into niosomes enhanced 75% transfection efficiency (p < 0.001) and biocompatibility (p < 0.05) to values over 90%, accompanied by a higher cellular uptake (p < 0.05). Intracellular trafficking analysis showed higher endocytosis via clathrins (p < 0.05) in nanodiaplexes compared with nioplexes, followed by higher lysosomal colocalization (p < 0.05), that coexisted with endosomal escape properties, whereas endocytosis mediated by caveolae was the most efficient pathway in the case of nanodiaplexes. Moreover, studies in CNS primary cells revealed that nanodiaplexes successfully transfected neuronal and retinal cells. This proof-of-concept study points out that ND integration into niosomes represents an encouraging nonviral nanoplatform strategy for the treatment of CNS diseases by gene therapy.


Assuntos
Doenças do Sistema Nervoso Central , Nanodiamantes , Terapia Genética , Células HEK293 , Humanos , Lipossomos/química , Plasmídeos
10.
Eur J Pharm Biopharm ; 159: 44-76, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359666

RESUMO

The development of microneedles (MNs) assisted drug delivery technologies have been highly active for more than two decades. The minimally invasive and self-administered MN technology bypasses many challenges associated with injectable drug delivery systems, by delivering the therapeutic materials directly into the dermal and ocular space and allowing the release of the active ingredient in a sustained or controlled manner. Different types of MNs (biodegradable solid/dissolving MNs and nanoparticle loaded/coated polymeric MNs or delivery by hollow MNs) have been envisioned for long-acting sustained delivery of therapeutic payloads, with the aim of reducing the side effects and administration frequency to improve the patient compliance. In this review, we covered the different types of MNs loaded with different nano/biotherapeutics for long-acting delivery for a wide range of potential clinical applications. We also outlined the future development scenario of such long-acting MN delivery systems for different disease conditions to achieve improved clinical benefit. Finally, we discussed the challenges lie ahead to realize the full potential of sustained-release long-acting MNs in the clinic.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/química , Adesivo Transdérmico , Administração Cutânea , Animais , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Humanos , Adesão à Medicação , Modelos Animais , Nanopartículas/química , Agulhas , Polímeros/química , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA