Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 14(12): e1703334, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29394467

RESUMO

This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.


Assuntos
Colorimetria/métodos , Microfluídica/métodos , Polímeros/química , Suor/química , Humanos , Dispositivos Lab-On-A-Chip , Pele/metabolismo
2.
ACS Appl Mater Interfaces ; 11(30): 26571-26580, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31274281

RESUMO

A recyclable, aqueous phase functioning and biocompatible photon upconverting system is developed. Hollow mesoporous silica microcapsules (HMSMs) with ordered radial mesochannels were employed, for the first time, as vehicles for the post-encapsulation of oil phase triplet-triplet annihilation upconversion (TTA-UC), with the capability of homogeneous suspension in water. In-depth characterization of such upconverting oil-laden HMSMs (UC-HMSMs) showed that the mesoporous silica shells reversibly stabilized the encapsulated UC oil in water to allow efficient upconverted emission, even under aerated conditions. In addition, the UC-HMSMs were found to actively bind to the surface of human mesenchymal stem cells without significant cytotoxicity and displayed upconverted bright blue emission under 640 nm excitation, indicating a potential of our new TTA-UC system in biophotonic applications. These findings reveal the great promise of UC-HMSMs to serve as ideal vehicles not only for ultralow-power in vivo imaging but also for stem cell labeling, to facilitate the tracking of tumor cells in animal models.


Assuntos
Materiais Biocompatíveis/química , Cápsulas/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Imagem Molecular/métodos , Fótons , Dióxido de Silício/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA