Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 18(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335550

RESUMO

To develop a biodegradable polymer possessing elasticity and flexibility, we synthesized MPEG-b-(PCL-co-PLA) copolymers (PCxLyA), which display specific rates of flexibility and elasticity. We synthesize the PCxLyA copolymers by ring-opening polymerization of ε-caprolactone and l-lactide. PCxLyA copolymers of various compositions were synthesized with 500,000 molecular weight. The PCxLyA copolymers mechanical properties were dependent on the mole ratio of the ε-caprolactone and l-lactide components. Cyclic tensile tests were carried out to investigate the resistance to creep of PCxLyA specimens after up to 20 deformation cycles to 50% elongation. After in vivo implantation, the PCxLyA implants exhibited biocompatibility, and gradually biodegraded over an eight-week experimental period. Immunohistochemical characterization showed that the PCxLyA implants provoked in vivo inflammation, which gradually decreased over time. The copolymer was used as a drug carrier for locally implantable drugs, the hydrophobic drug dexamethasone (Dex), and the water-soluble drug dexamethasone 21-phosphate disodium salt (Dex(p)). We monitored drug-loaded PCxLyA films for in vitro and in vivo drug release over 40 days and observed real-time sustained release of near-infrared (NIR) fluorescence over an extended period from hydrophobic IR-780- and hydrophilic IR-783-loaded PCxLyA implanted in live animals. Finally, we confirmed that PCxLyA films are usable as biodegradable, elastic drug carriers.


Assuntos
Plásticos Biodegradáveis/química , Sistemas de Liberação de Medicamentos/efeitos adversos , Poliésteres/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Plásticos Biodegradáveis/efeitos adversos , Plásticos Biodegradáveis/síntese química , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Liberação Controlada de Fármacos , Poliésteres/efeitos adversos , Poliésteres/síntese química , Ratos , Ratos Sprague-Dawley
2.
Adv Sci (Weinh) ; 9(15): e2200872, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343104

RESUMO

Deferoxamine (DFO) is an FDA-approved iron-chelating agent which shows good therapeutic efficacy, however, its short blood half-life presents challenges such as the need for repeated injections or continuous infusions. Considering the lifelong need of chelating agents for iron overload patients, a sustained-release formulation that can reduce the number of chelator administrations is essential. Here, injectable hydrogel formulations prepared by integrating crosslinked hyaluronic acid into Pluronic F127 for an extended release of DFO nanochelators are reported. The subcutaneously injected hydrogel shows a thermosensitive sol-gel transition at physiological body temperature and provides a prolonged release of renal clearable nanochelators over 2 weeks, resulting in a half-life 47-fold longer than that of the nanochelator alone. In addition, no chronic toxicity of the nanochelator-loaded hydrogel is confirmed by biochemical and histological analyses. This injectable hydrogel formulation with DFO nanochelators has the potential to be a promising formulation for the treatment of iron overload disorders.


Assuntos
Hidrogéis , Sobrecarga de Ferro , Preparações de Ação Retardada/uso terapêutico , Humanos , Ferro , Sobrecarga de Ferro/tratamento farmacológico , Poloxâmero/uso terapêutico
3.
Acta Biomater ; 117: 108-120, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927087

RESUMO

An injectable, click-crosslinking (Cx) hyaluronic acid (HA) hydrogel scaffold modified with a bone morphogenetic protein-2 (BMP-2) mimetic peptide (BP) was prepared for bone tissue engineering applications. The injectable click-crosslinking HA formulation was prepared from HA-tetrazine (HA-Tet) and HA-cyclooctene (HA-TCO). The Cx-HA hydrogel scaffold was prepared simply by mixing HA-Tet and HA-TCO. The Cx-HA hydrogel scaffold was stable for a longer period than HA both in vitro and in vivo, which was verified via in-vivo fluorescence imaging in real time. BP acted as an osteogenic differentiation factor for human dental pulp stem cells (hDPSCs). After its formation in vivo, the Cx-HA scaffold provided a fine environment for the hDPSCs, and the biocompatibility of the hydrogel scaffold with tissue was good. Like traditional BMP-2, BP induced the osteogenic differentiation of hDPSCs in vitro. The physical properties and injectability of the chemically loaded BP for the Cx-HA hydrogel (Cx-HA-BP) were nearly identical to those of the physically loaded BP hydrogels and the Cx-HA-BP formulation quickly formed a hydrogel scaffold in vivo. The chemically loaded hydrogel scaffold retained the BP for over a month. The Cx-HA-BP hydrogel was better at inducing the osteogenic differentiation of loaded hDPSCs, because it prolonged the availability of BP. In summary, we successfully developed an injectable, click-crosslinking Cx-HA hydrogel scaffold to prolong the availability of BP for efficient bone tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Ácido Hialurônico , Hidrogéis/farmacologia , Osteogênese , Alicerces Teciduais
4.
J Mater Chem B ; 7(47): 7599-7611, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31740904

RESUMO

In this work, we prepared an electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) (SIS/PCLA) sheet onto which substance P (SP) was loaded, and this was employed as a cell-free scaffold for wound healing through the mobilization of human mesenchymal stem cells (hMSCs). SP release from the SP-loaded scaffold was 42% at 12 h and 51% at 24 h due to an initial burst of SP, but after 1 day, it exhibited a linear release profile and was released at a sustained rate for 21 days. The SP-loaded SIS/PCLA sheet exhibited higher in vitro and in vivo hMSC migration than did the PCLA and SIS/PCLA sheets. Large hMSCs injected into the tail vein of mice models migrated towards the wound to a greater extent in the presence of the SP-loaded SIS/PCLA sheet than with the PCLA and SIS/PCLA sheets, as confirmed by the CD44 and CD29 markers of recruited hMSCs. In animal wound models, significantly higher wound contraction (∼97%) in the group treated with the SP-loaded SIS/PCLA sheet was observed compared with the PCLA (∼74%) and SIS/PCLA (∼84%) groups at 3 weeks. In addition, SP-loaded SIS/PCLA-treated animals showed significant epidermal regeneration and collagen density (56%) in the mature granulation tissue at 3 weeks compared to the PCLA and SIS/PCLA groups. The wound area after SP-loaded SIS/PCLA sheet treatment also showed high blood vessel formation at the early stage, resulting in enhanced wound healing. Furthermore, the SP-loaded SIS/PCLA group exhibited a lower macrophage count (2.9%) than did the PCLA (7.7%) and SIS/PCLA (3.4%) groups. It was thus confirmed that the use of SP-loaded SIS/PCLA sheet as a cell-free scaffold could effectively enhance wound healing through MSC recruitment.


Assuntos
Mucosa Intestinal/química , Poliésteres/química , Substância P/química , Animais , Movimento Celular/efeitos dos fármacos , Feminino , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Pele/patologia , Espectroscopia de Luz Próxima ao Infravermelho , Substância P/metabolismo , Substância P/farmacologia , Cicatrização/efeitos dos fármacos
5.
Biomaterials ; 154: 86-98, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29120821

RESUMO

To the best of our knowledge, no studies have yet examined the electrostatic interaction of polyelectrolytes with electrolyte drugs for the treatment of rheumatoid arthritis (RA). Here, an injectable, electrostatically interacting drug depot is described. We prepared methoxy polyethylene glycol-b-poly(ε-caprolactone)-ran-poly(l-lactic acid) (MC) diblock copolymers with a carboxylic acid group (MC-C) at the pendant position. MC-C was polyelectrolytes that exhibited negative zeta potentials. Sulfasalazine [Sul(-)] and minocycline [Min(+)], electrolyte RA drugs, exhibited negative and positive zeta potentials, respectively. The electrolyte RA drugs were loaded into the polyelectrolyte MC-C solution to prepare injectable, electrostatically interacting depot formulations. The formulation with an attractive electrostatic interaction [Min(+)-MC-C] exhibited gradual release of Min(+) from the MC-C depot over an extended period and suppressed the growth of inflammatory RAW 264.7 cells without affecting synovial cells. Mature chondrocytes were observed after H&E and safranin O staining of the cartilage of Min(+)-MC-C intra-articularly injected RA-induced rats. In comparison with other formulations, Min(+)-MC-C induced the suppression of the expression of pro-inflammatory proteins TNF-α and IL-1ß in the articular knee joint, which resulted in the amelioration of RA. In conclusion, an injectable, electrostatically interacting depot formulation administered through intra-articular injection successfully provided almost complete amelioration of RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Eletricidade Estática , Animais , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Sobrevivência Celular , Liberação Controlada de Fármacos , Inflamação/patologia , Injeções , Interleucina-1beta/metabolismo , Masculino , Camundongos , Transição de Fase , Polímeros/química , Células RAW 264.7 , Ratos Endogâmicos Lew , Reprodutibilidade dos Testes , Soluções , Membrana Sinovial/patologia , Temperatura , Fator de Necrose Tumoral alfa/metabolismo , Viscosidade
6.
Acta Biomater ; 74: 192-206, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793074

RESUMO

In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. STATEMENT OF SIGNIFICANCE: The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at an injured site and the surrounding healthy tissues. However, CAM has not been rigorously investigated as an antiadhesive barrier. In this manuscript, the cross-linked CAM nanofiber (Cx-CA/P-NF) designed herein successfully works as an antiadhesive barrier. Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Moreover, we demonstrated the suitable properties of Cx-CA/P-NF such as easy cross-linking by maintaining the antiadhesive properties, controllable biodegradation, and in vivo antiadhesive effect of Cx-CA/P-NF.


Assuntos
Matriz Extracelular/química , Nanofibras , Poliésteres , Aderências Teciduais/prevenção & controle , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia
7.
Sci Rep ; 7(1): 6603, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747761

RESUMO

This is the first report on the development of a covalently bone morphogenetic protein-2 (BMP2)-immobilized hydrogel that is suitable for osteogenic differentiation of human periodontal ligament stem cells (hPLSCs). O-propargyl-tyrosine (OpgY) was site-specifically incorporated into BMP2 to prepare BMP2-OpgY with an alkyne group. The engineered BMP2-OpgY exhibited osteogenic characteristics after in vitro osteogenic differentiation of hPLSCs, indicating the osteogenic ability of BMP2-OpgY. A methoxy polyethylene glycol-(polycaprolactone-(N3)) block copolymer (MC-N3) was prepared as an injectable in situ-forming hydrogel. BMP2 covalently immobilized on an MC hydrogel (MC-BMP2) was prepared quantitatively by a simple biorthogonal reaction between alkyne groups on BMP2-OpgY and azide groups on MC-N3 via a Cu(I)-catalyzed click reaction. The hPLSCs-loaded MC-BMP2 formed a hydrogel almost immediately upon injection into animals. In vivo osteogenic differentiation of hPLSCs in the MC-BMP2 formulation was confirmed by histological staining and gene expression analyses. Histological staining of hPLSC-loaded MC-BMP2 implants showed evidence of mineralized calcium deposits, whereas hPLSC-loaded MC-Cl or BMP2-OpgY mixed with MC-Cl, implants showed no mineral deposits. Additionally, MC-BMP2 induced higher levels of osteogenic gene expression in hPLSCs than in other groups. In conclusion, BMP2-OpgY covalently immobilized on MC-BMP2 induced osteogenic differentiation of hPLSCs as a noninvasive method for bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Células-Tronco/efeitos dos fármacos , Adulto , Proteína Morfogenética Óssea 2/administração & dosagem , Feminino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Injeções , Adulto Jovem
8.
Macromol Biosci ; 16(8): 1158-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074749

RESUMO

In this study, human dental pulp stem cells (hDPSCs) are examined as a cellular source for bone tissue engineering using an in vivo-forming hydrogel. The hDPSCs are easily harvested in large quantities from extracted teeth. The stemness of harvested hDPSCs indicates their relative tolerance to ex vivo manipulation in culture. The in vitro osteogenic differentiation of hDPSCs is characterized using Alizarin Red S (ARS), von Kossa (VK), and alkaline phosphatase (ALP) staining. The solution of hDPSCs and a methoxy polyethylene glycol-polycaprolactone block copolymer (PC) is easily prepared by simple mixing at room temperature and in no more than 10 s it forms in vivo hydrogels after subcutaneous injection into rats. In vivo osteogenic differentiation of hDPSCs in the in vivo-forming hydrogel is confirmed by micro-computed tomography (CT), histological staining, and gene expression. Micro-CT analysis shows evidence of significant tissue-engineered bone formation in hDPSCs-loaded hydrogel in the presence of osteogenic factors. Differentiated osteoblasts in in vivo-forming hydrogel are identified by ARS and VK staining and are found to exhibit characteristic expression of genes like osteonectin, osteopontin, and osteocalcin. In conclusion, hDPSCs embedded in an in vivo-forming hydrogel may provide benefits as a noninvasive formulation for bone tissue engineering applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Injeções , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Implantes Experimentais , Inflamação/patologia , Injeções Subcutâneas , Osteogênese/genética , Poliésteres/farmacologia , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Soluções , Coloração e Rotulagem , Células-Tronco/efeitos dos fármacos , Temperatura , Engenharia Tecidual , Viscosidade , Microtomografia por Raio-X
9.
Biomaterials ; 85: 232-45, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26874285

RESUMO

Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Fluoruracila/química , Fluoruracila/farmacocinética , Fluoruracila/uso terapêutico , Hidrogéis/química , Injeções Intralesionais , Camundongos , Camundongos Endogâmicos C57BL , Polímeros/química , Reologia , Distribuição Tecidual , Viscosidade
10.
Sci Rep ; 5: 12721, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26234712

RESUMO

A computer-designed, solvent-free scaffold offer several potential advantages such as ease of customized manufacture and in vivo safety. In this work, we firstly used a computer-designed, solvent-free scaffold and human dental pulp stem cells (hDPSCs) to regenerate neo-bone within cranial bone defects. The hDPSCs expressed mesenchymal stem cell markers and served as an abundant source of stem cells with a high proliferation rate. In addition, hDPSCs showed a phenotype of differentiated osteoblasts in the presence of osteogenic factors (OF). We used solid freeform fabrication (SFF) with biodegradable polyesters (MPEG-(PLLA-co-PGA-co-PCL) (PLGC)) to fabricate a computer-designed scaffold. The SFF technology gave quick and reproducible results. To assess bone tissue engineering in vivo, the computer-designed, circular PLGC scaffold was implanted into a full-thickness cranial bone defect and monitored by micro-computed tomography (CT) and histology of the in vivo tissue-engineered bone. Neo-bone formation of more than 50% in both micro-CT and histology tests was observed at only PLGC scaffold with hDPSCs/OF. Furthermore, the PLGC scaffold gradually degraded, as evidenced by the fluorescent-labeled PLGC scaffold, which provides information to tract biodegradation of implanted PLGC scaffold. In conclusion, we confirmed neo-bone formation within a cranial bone defect using hDPSCs and a computer-designed PLGC scaffold.


Assuntos
Regeneração Óssea , Polpa Dentária/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Adulto , Animais , Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Desenho Assistido por Computador , Feminino , Humanos , Osteoblastos/citologia , Poliésteres/química , Ratos Sprague-Dawley , Crânio/transplante , Células-Tronco/fisiologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA