Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218017

RESUMO

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa-1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa-1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


Assuntos
Monitorização Fisiológica/instrumentação , Nanofios , Poliuretanos , Dispositivos Eletrônicos Vestíveis , Humanos , Pressão , Prata
2.
IEEE J Biomed Health Inform ; 26(2): 581-588, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34255638

RESUMO

High linearity/sensitivity and a wide dynamic sensing range are the most desirable features for pressure sensors to accurately detect and respond to external pressure stimuli. Even though a number of recent studies have demonstrated a low-cost pressure sensing device for a smart insole system by using scalable and deformable conductive materials, they still lack stretchability and desirable properties such as high sensitivity, hysteresis, linearity, and fast response time to obtain accurate and reliable data. To resolve this issue, a flexible and stretchable piezoresistive pressure sensor with high linear response over a wide pressure range is developed and integrated in a wearable insole system. The sensor uses multi-walled carbon nanotubes and polydimethylsiloxane (MWCNT/PDMS) composites with gradient density double-stacked configuration as well as randomly distributed surface microstructure (RDSM). The randomly distributed surface of the MWCNT/PDMS composite is easily and non-artificially generated by the evaporation of residual IPA solvent during a composite curing process. Due to two functional features consisting of the double-stacked composite configuration with different gradient MWCNT density and RDSM, the pressure sensor shows high linear sensitivity (∼82.5 kPa) and a pressure range of 0-1 MPa, providing extensive potential applications in monitoring human motions. Moreover, for a practical wearable application detecting the user's real-time motions, a custom-designed output signal acquisition system has been developed and integrated with the insole pressure sensor. As a result, the insole sensor can successfully detect walking, running, and jumping movements and can be used in daily life to monitor gait patterns by virtue of its long-term stability.


Assuntos
Nanotubos de Carbono , Dimetilpolisiloxanos/química , Humanos , Movimento (Física) , Nanotubos de Carbono/química , Sapatos , Caminhada
3.
Adv Mater ; 32(22): e2000969, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32310332

RESUMO

Mimicking human skin sensation such as spontaneous multimodal perception and identification/discrimination of intermixed stimuli is severely hindered by the difficulty of efficient integration of complex cutaneous receptor-emulating circuitry and the lack of an appropriate protocol to discern the intermixed signals. Here, a highly stretchable cross-reactive sensor matrix is demonstrated, which can detect, classify, and discriminate various intermixed tactile and thermal stimuli using a machine-learning approach. Particularly, the multimodal perception ability is achieved by utilizing a learning algorithm based on the bag-of-words (BoW) model, where, by learning and recognizing the stimulus-dependent 2D output image patterns, the discrimination of each stimulus in various multimodal stimuli environments is possible. In addition, the single sensor device integrated in the cross-reactive sensor matrix exhibits multimodal detection of strain, flexion, pressure, and temperature. It is hoped that his proof-of-concept device with machine-learning-based approach will provide a versatile route to simplify the electronic skin systems with reduced architecture complexity and adaptability to various environments beyond the limitation of conventional "lock and key" approaches.


Assuntos
Materiais Biomiméticos/química , Técnicas Biossensoriais/instrumentação , Dispositivos Eletrônicos Vestíveis , Algoritmos , Materiais Revestidos Biocompatíveis/química , Humanos , Aprendizado de Máquina , Modelos Químicos , Nanofios/química , Percepção , Poliuretanos/química , Pressão , Prata/química , Temperatura , Tato
4.
Sci Rep ; 5: 14520, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26411932

RESUMO

The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-µm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.


Assuntos
Eletrônica , Compostos Orgânicos , Semicondutores , Carbono , Fotoquímica , Polímeros
5.
J Proteome Res ; 7(5): 1994-2006, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18361515

RESUMO

Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications--914 in parotid and 917 in submandibular/sublingual saliva--were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes ranging from structural functions to enzymatic/catalytic activities. As expected, the majority mapped to the extracellular and secretory compartments. An immunoblot approach was used to validate the presence in saliva of a subset of the proteins identified by mass spectrometric approaches. These experiments focused on novel constituents and proteins for which the peptide evidence was relatively weak. Ultimately, information derived from the work reported here and related published studies can be used to translate blood-based clinical laboratory tests into a format that utilizes saliva. Additionally, a catalogue of the salivary proteome of healthy individuals allows future analyses of salivary samples from individuals with oral and systemic diseases, with the goal of identifying biomarkers with diagnostic and/or prognostic value for these conditions; another possibility is the discovery of therapeutic targets.


Assuntos
Glândula Parótida/química , Proteoma/análise , Saliva/química , Proteínas e Peptídeos Salivares/análise , Glândula Sublingual/química , Glândula Submandibular/química , Adulto , Proteínas Sanguíneas/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise Serial de Proteínas , Lágrimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA