Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Mater Chem B ; 11(27): 6225-6248, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309580

RESUMO

Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.


Assuntos
Nanotubos de Carbono , Engenharia Tecidual , Engenharia Tecidual/métodos , Nanotubos de Carbono/química , Osso e Ossos , Materiais Biocompatíveis/química , Durapatita/química
2.
J Mater Chem B ; 11(46): 11006-11023, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37953707

RESUMO

Neuronal tissue engineering has immense potential for treating neurological disorders and facilitating nerve regeneration. Conducting polymers (CPs) have emerged as a promising class of materials owing to their unique electrical conductivity and biocompatibility. CPs, such as poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-hexylthiophene) (P3HT), polypyrrole (PPy), and polyaniline (PANi), have been extensively explored for their ability to provide electrical cues to neural cells. These polymers are widely used in various forms, including porous scaffolds, hydrogels, and nanofibers, and offer an ideal platform for promoting cell adhesion, differentiation, and axonal outgrowth. CP-based scaffolds can also serve as drug delivery systems, enabling localized and controlled release of neurotrophic factors and therapeutic agents to enhance neural regeneration and repair. CP-based scaffolds have demonstrated improved neural regeneration, both in vitro and in vivo, for treating spinal cord and peripheral nerve injuries. In this review, we discuss synthesis and scaffold processing methods for CPs and their applications in neuronal tissue regeneration. We focused on a detailed literature review of the central and peripheral nervous systems.


Assuntos
Polímeros , Engenharia Tecidual , Engenharia Tecidual/métodos , Polímeros/uso terapêutico , Alicerces Teciduais , Pirróis/farmacologia , Neurônios
3.
Biomaterials ; 289: 121792, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116170

RESUMO

Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Engenharia Tecidual , Animais , Materiais Biocompatíveis/metabolismo , Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Colforsina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Camundongos , Osteoblastos , Osteogênese/fisiologia
4.
J Biomater Appl ; 36(5): 912-929, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34139891

RESUMO

The eggshell membrane (ESM) is an abundant resource with innate complex structure and composition provided by nature. With at least 60 million tonnes of hen eggs produced globally per annum, utilisation of this waste resource is highly attractive in positively impacting sustainability worldwide. Given the morphology and mechanical properties of this membrane, it has great potential as a biomaterials for wound dressing. However, to date, no studies have demonstrated nor reported this application. As such, the objective of this investigation was to identify and optimise a reproducible extraction protocol of the ESM and to assess the physical, chemical, mechanical and biological properties of the substrate with a view to use as a wound dressing. ESM samples were isolated by either manual peeling (ESM-strip) or via extraction using acetic acid [ESM-A0.5] or ethylenediaminetetraacetic acid, EDTA [ESM-E0.9]. Energy dispersive X-ray spectroscopy (EDS) confirmed that there were no traces of calcium residues from the extraction process. Fourier transform infrared (FTIR) spectroscopy revealed that the extraction method (acetic acid and EDTA) did not alter the chemical structures of the ESM and also clarified the composition of the fibrous proteins of the ESM. Scanning electron microscopy (SEM) analyses revealed a three-layer composite structure of the ESM: an inner layer as continuous, dense and non-fibrous (limiting membrane), a middle layer with a network of fibres (inner shell membrane) and the outer layer (outer shell membrane) of larger fibres. Material properties including optical transparency, porosity, fluid absorption/uptake, thermal stability, mechanical profiling of the ESM samples were performed and demonstrated suitable profiles for translational applications. Biological in vitro studies using SV40 immortalised corneal epithelial cells (ihCEC) and corneal mesenchymal stromal cells (C-MSC) demonstrated excellent biocompatibility. Taken together, these results document the development of a novel sustainable biomaterial that may be used for ophthalmic wounds and/or other biomedical therapies.


Assuntos
Materiais Biocompatíveis/química , Lesões da Córnea/terapia , Casca de Ovo/química , Cicatrização , Animais , Bandagens , Biomimética , Técnicas de Cultura de Células , Galinhas , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
5.
Acta Biomater ; 108: 97-110, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165193

RESUMO

Tailoring the surface of biomaterial scaffolds has been a key strategy to modulate the cellular interactions that are helpful for tissue healing process. In particular, nanotopological surfaces have been demonstrated to regulate diverse behaviors of stem cells, such as initial adhesion, spreading and lineage specification. Here, we tailor the surface of biopolymer nanofibers with carbon nanotubes (CNTs) to create a unique bi-modal nanoscale topography (500 nm nanofiber with 25 nm nanotubes) and report the performance in modulating diverse in vivo responses including inflammation, angiogenesis, and bone regeneration. When administered to a rat subcutaneous site, the CNT-coated nanofiber exhibited significantly reduced inflammatory signs (down-regulated pro-inflammatory cytokines and macrophages gathering). Moreover, the CNT-coated nanofibers showed substantially promoted angiogenic responses, with enhanced neoblood vessel formation and angiogenic marker expression. Such stimulated tissue healing events by the CNT interfacing were evidenced in a calvarium bone defect model. The in vivo bone regeneration of the CNT- coated nanofibers was significantly accelerated, with higher bone mineral density and up-regulated osteogenic signs (OPN, OCN, BMP2) of in vivo bone forming cells. The in vitro studies using MSCs could demonstrate accelerated adhesion and osteogenic differentiation and mineralization, supporting the osteo-promoting mechanism behind the in vivo bone forming event. These findings highlight that the CNTs interfacing of biopolymer nanofibers is highly effective in reducing inflammation, promoting angiogenesis, and driving adhesion and osteogenesis of MSCs, which eventually orchestrate to accelerate tissue healing and bone regeneration process. STATEMENT OF SIGNIFICANCE: Here we demonstrate that the interfacing of biopolymer nanofibers with carbon nanotubes (CNTs) could modulate multiple interactions of cells and tissues that are ultimately helpful for the tissue healing and bone regeneration process. The CNT-coated scaffolds significantly reduced the pro-inflammatory signals while stimulating the angiogenic marker expressions. Furthermore, the CNT-coated scaffolds increased the bone matrix production of bone forming cells in vivo as well as accelerated the adhesion and osteogenic differentiation of MSCs in vitro. These collective findings highlight that the CNTs coated on the biopolymer nanofibers allow the creation of a promising platform for nanoscale engineering of biomaterial surface that can favor tissue healing and bone regeneration process, through a series of orchestrated events in anti-inflammation, pro-angiogenesis, and stem cell stimulation.


Assuntos
Nanofibras , Nanotubos de Carbono , Animais , Biopolímeros , Regeneração Óssea , Diferenciação Celular , Osteogênese , Ratos , Alicerces Teciduais
6.
Biomed Mater ; 16(1): 015007, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32674078

RESUMO

Three-dimensional (3D) printing enhances the production of on-demand fabrication of patient-specific devices, as well as anatomically fitting implants with high complexity in a cost-effective manner. Additive systems that employ vat photopolymerisation such as stereolithography (SLA) and digital light projection are used widely in the field of biomedical science and engineering. However, additive manufacturing methods can be limited by the types of materials that can be used. In this study, we present an isosorbide-based formulation for a polymer resin yielding a range of elastic moduli between 1.7 and 3 GN mm-2 dependent on the photoinitiator system used as well as the amount of calcium phosphate filler added. The monomer was prepared and enhanced for 3D-printing using an SLA technique that delivered stable and optimized 3D-printed models. The resin discussed could potentially be used following major surgery for the correction of congenital defects, the removal of oral tumours and the reconstruction of the head and neck region. The surgeon is usually limited with devices available to restore both function and appearance and with the ever-increasing demand for low-priced and efficient facial implants, there is an urgent need to advance new manufacturing approaches and implants with a higher osseointegration performance.


Assuntos
Materiais Biocompatíveis/síntese química , Polímeros/síntese química , Impressão Tridimensional , Próteses e Implantes , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Adesão Celular , Linhagem Celular , Dureza , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Polímeros/química , Medicina de Precisão , Resinas Sintéticas/síntese química , Resinas Sintéticas/química , Estereolitografia , Engenharia Tecidual/métodos , Molhabilidade
7.
Sci Rep ; 9(1): 4921, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894673

RESUMO

Although PMMA-based biomaterials are widely used in clinics, a major hurdle, namely, their poor antimicrobial (i.e., adhesion) properties, remains and can accelerate infections. In this study, carboxylated multiwalled carbon nanotubes (CNTs) were incorporated into poly(methyl methacrylate) (PMMA) to achieve drug-free antimicrobial adhesion properties. After characterizing the mechanical/surface properties, the anti-adhesive effects against 3 different oral microbial species (Staphylococcus aureus, Streptococcus mutans, and Candida albicans) were determined for roughened and highly polished surfaces using metabolic activity assays and staining for recognizing adherent cells. Carboxylated multiwalled CNTs were fabricated and incorporated into PMMA. Total fracture work was enhanced for composites containing 1 and 2% CNTs, while other mechanical properties were gradually compromised with the increase in the amount of CNTs incorporated. However, the surface roughness and water contact angle increased with increasing CNT incorporation. Significant anti-adhesive effects (35~95%) against 3 different oral microbial species without cytotoxicity to oral keratinocytes were observed for the 1% CNT group compared to the PMMA control group, which was confirmed by microorganism staining. The anti-adhesive mechanism was revealed as a disconnection of sequential microbe chains. The drug-free antimicrobial adhesion properties observed in the CNT-PMMA composite suggest the potential utility of CNT composites as future antimicrobial biomaterials for preventing microbial-induced complications in clinical settings (i.e., Candidiasis).


Assuntos
Candida albicans/efeitos dos fármacos , Nanotubos de Carbono/química , Polimetil Metacrilato/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Teste de Materiais , Nanotubos de Carbono/ultraestrutura , Polimetil Metacrilato/química , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus mutans/crescimento & desenvolvimento , Propriedades de Superfície
8.
ACS Appl Mater Interfaces ; 7(48): 26850-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26561865

RESUMO

Biocompatible nanostructured surfaces control the cell behaviors and tissue integration process of medical devices and implants. Here we develop a novel biocompatible nanostructured surface based on mesoporous silica nanotube (MSNT) by means of an electrodeposition. MSNTs, replicated from carbon nanotubes of 25 nm × 1200 nm size, were interfaced in combination with fugitive biopolymers (chitosan or collagen) onto a Ti metallic substrate. The MSNT-biopolymer deposits uniformly covered the substrate with weight gains controllable by the electrodeposition conditions. Random nanotubular networks were generated successfully, which alongside the high mesoporosity provided unique nanotopological properties for the cell responses and the loading/delivery of biomolecules. Of note, the adhesion and spreading behaviors of mesenchymal stem cells (MSCs) were significantly altered, revealing more rapid cell anchorage and extensive nanofilopodia development along the nanotubular networks. Furthermore, the nanotubular surface improved the loading capacity of biomolecules (dexamethasone and bovine serum albumin) up to 5-7 times. The release of the biomolecules was highly sustained, exhibiting a diffusion-controlled pattern over 15 days. The therapeutic efficacy of the delivered biomolecules was also confirmed in the osteogenic differentiation of MSCs. While in vivo performance and applicability studies are needed further, the current biocompatible nanostructured surface may be considered as a novel biointerfacing platform to control cellular behaviors and biomolecular delivery.


Assuntos
Materiais Biocompatíveis/farmacologia , Dexametasona/farmacologia , Sistemas de Liberação de Medicamentos , Células-Tronco Mesenquimais/citologia , Nanotubos/química , Soroalbumina Bovina/farmacologia , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos/ultraestrutura , Porosidade , Ratos Sprague-Dawley
9.
ACS Appl Mater Interfaces ; 7(15): 8088-98, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25768431

RESUMO

Nanoscale scaffolds that characterize high bioactivity and the ability to deliver biomolecules provide a 3D microenvironment that controls and stimulates desired cellular responses and subsequent tissue reaction. Herein novel nanofibrous hybrid scaffolds of polycaprolactone shelled with mesoporous silica (PCL@MS) were developed. In this hybrid system, the silica shell provides an active biointerface, while the 3D nanoscale fibrous structure provides cell-stimulating matrix cues suitable for bone regeneration. The electrospun PCL nanofibers were coated with MS at controlled thicknesses via a sol-gel approach. The MS shell improved surface wettability and ionic reactions, involving substantial formation of bone-like mineral apatite in body-simulated medium. The MS-layered hybrid nanofibers showed a significant improvement in mechanical properties, in terms of both tensile strength and elastic modulus, as well as in nanomechanical surface behavior, which is favorable for hard tissue repair. Attachment, growth, and proliferation of rat mesenchymal stem cells were significantly improved on the hybrid scaffolds, and their osteogenic differentiation and subsequent mineralization were highly up-regulated by the hybrid scaffolds. Furthermore, the mesoporous surface of the hybrid scaffolds enabled the loading of a series of bioactive molecules, including small drugs and proteins at high levels. The release of these molecules was sustainable over a long-term period, indicating the capability of the hybrid scaffolds to deliver therapeutic molecules. Taken together, the multifunctional hybrid nanofibrous scaffolds are considered to be promising therapeutic platforms for stimulating stem cells and for the repair and regeneration of bone.


Assuntos
Citocromos c/administração & dosagem , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Osteoblastos/citologia , Dióxido de Silício/química , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Substitutos Ósseos/síntese química , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanofibras/ultraestrutura , Nanoporos/ultraestrutura , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Porosidade , Ratos
10.
ACS Appl Mater Interfaces ; 6(22): 20214-24, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25325144

RESUMO

Exploring the biological interfaces of metallic implants has been an important issue in achieving biofunctional success. Here we develop a biointerface with nanotopological features and bioactive composition, comprising a carbon nanotube (CNT) and chitosan (Chi) hybrid, via an electrophoretic deposition (EPD). The physicochemical properties, in vitro biocompatibility, and protein delivering capacity of the decorated nanohybrid layer were investigated, to address its potential usefulness as bone regenerating implants. Over a wide compositional range, the nanostructured hybrid interfaces were successfully formed with varying thicknesses, depending on the electrodeposition parameters. CNT-Chi hybrid interfaces showed a time-sequenced degradation in saline water, and a rapid induction of hydroxyapatite mineral in a simulated body fluid. The nanostructured hybrid substrates stimulated the initial adhesion events of the osteoblastic cells, including cell adhesion rate, spreading behaviors, and expression of adhesive proteins. The nanostructured hybrid interfaces significantly improved the adsorption of protein molecules, which was enabled by the surface charge interaction, and increased surface area of the nanotopology. Furthermore, the incorporated protein was released at a highly sustained rate, profiling a diffusion-controlled pattern over a couple of weeks, suggesting the possible usefulness as a protein delivery device. Collectively, the nanostructured hybrid CNT-Chi layer, implemented by an electrodeposition, is considered a biocompatible, cell-stimulating, and protein-delivering biointerface of metallic implants.


Assuntos
Quitosana/química , Materiais Revestidos Biocompatíveis/química , Metais/química , Nanoestruturas/química , Nanotubos de Carbono/química , Adsorção , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Camundongos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo
11.
Acta Biomater ; 10(3): 1238-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24239677

RESUMO

Three-dimensional (3-D) open-channeled scaffolds of biopolymers are a promising candidate matrix for tissue engineering. When scaffolds have the capacity to deliver bioactive molecules the potential for tissue regeneration should be greatly enhanced. In order to improve drug-delivery capacity, we exploit 3-D poly(lactic acid) (PLA) scaffolds by creating microporosity within the scaffold network. Macroporous channeled PLA with a controlled pore configuration was obtained by a robotic dispensing technique. In particular, a room temperature ionic liquid (RTIL) bearing hydrophilic counter-anions, such as OTf and Cl, was introduced to the biopolymer solution at varying ratios. The RTIL-biopolymer slurry was homogenized by ultrasonication, and then solidified through the robotic dispensing process, during which the biopolymer and RTIL formed a bicontinuous interpenetrating network. After ethanol wash-out treatment the RTIL was completely removed to leave highly microporous open channels throughout the PLA network. The resultant pore size was observed to be a few micrometers (average 2.43 µm) and microporosity was determined to be ∼ 70%. The microporous surface was also shown to favor initial cell adhesion, stimulating cell anchorage on the microporous structure. Furthermore, in vivo tissue responses assessed in rat subcutaneous tissue revealed good tissue compatibility, with minimal inflammatory reactions, while gathering a larger population of fibroblastic cells than the non-microporous scaffolds, and even facilitating invasion of the cells within the microporous structure. The efficacy of the micropore networks generated within the 3-D scaffolds in loading and releasing therapeutic molecules was addressed using antibiotic sodium ampicillin and protein cytochrome C as model drugs. The microporous scaffolds exhibited significantly enhanced drug loading capacity: 4-5 times increase in ampicillin and 9-10 times increase in cytochrome C compared to the non-microporous scaffolds. The release of ampicillin loaded within the microporous scaffolds was initially fast (∼ 85% for 1 week), and was then slowed down, showing a continual release up to a month. On the other hand, cytochrome C was shown to release in a highly sustainable manner over a month, without showing an initial burst release effect. This study provides a novel insight into the generation of 3-D biopolymer scaffolds with high performance in loading and delivery of biomolecules, facilitated by the creation of microporous channels through the scaffold network. The capacity to support tissue cells while in situ delivering drug molecules makes the current scaffolds potentially useful for therapeutic tissue engineering.


Assuntos
Biopolímeros/química , Sistemas de Liberação de Medicamentos , Teste de Materiais/métodos , Alicerces Teciduais/química , Ampicilina/farmacologia , Animais , Citocromos c/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Ácido Láctico/química , Masculino , Camundongos , Poliésteres , Polímeros/química , Porosidade , Ratos Sprague-Dawley , Robótica , Temperatura
12.
J Biomed Mater Res A ; 100(7): 1734-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22447364

RESUMO

Magnetic nanoparticles (MNPs) are considered highly useful in therapeutic and diagnostic applications. However, MNPs require surface modification to promote dispersibility in aqueous solutions and thus biocompatibility. In this article, the authors modified MNPs with inorganic silica layer to create silica-coated magnetite nanoparticles (MNP@Si) via sol-gel process. Synthesis involves hydrolysis and condensation steps using tetraethylorthosilicate (TEOS) in methanol/ polyethylene glycol (PEG) solution and ammonia catalyst. Nanoparticles were characterized in terms of morphology, particle size, crystalline phase, chemical-bond structure, surface charge and magnetic properties: in particular, the MNP@Si size was easily tunable through alteration of the Fe(3) O(4) -to-TEOS ratio. As this ratio increased, the MNP@Si size decreased from 270 to 15 nm whilst maintaining core 12-nm MNP particle size, indicating decrease in thickness of the silica coating. All MNP@Si, in direct contrast to uncoated MNPs, showed excellent stability in aqueous solution. The particles' physicochemical and magnetic properties systematically varied with size (coating thickness), and the zeta potential diminished toward negative values, while magnetization increased as the coating thickness decreased. 15-nm MNP@Si showed excellent magnetization (about 64.1 emu/g), almost comparable to that of uncoated MNPs (70.8 emu/g). Preliminary in vitro assays confirmed that the silica layer significantly reduced cellular toxicity as assessed by increase in cell viability and reduction in reactive oxygen species production during 48 h of culture. Newly-developed MNP@Si, with a high capacity for magnetization, water-dispersibility, and diminished cell toxicity, may be potentially useful in diverse biomedical applications, including delivery of therapeutic and diagnostic biomolecules.


Assuntos
Materiais Biocompatíveis , Óxido Ferroso-Férrico , Nanopartículas , Células 3T3 , Animais , Cristalografia por Raios X , Magnetismo , Camundongos , Microscopia Eletrônica de Transmissão , Silanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA