Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Peripher Nerv Syst ; 26(2): 167-176, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624350

RESUMO

The long-term sequelae of nerve injury as well as age-related neurodegeneration have been documented in numerous studies, however the role of Cx32 in these processes is not well understood. There is a need for better understanding of the molecular mechanisms that underlie long-term suboptimal nerve function and for approaches to prevent or improve it. In this communication we describe our studies using whole animal electrophysiology to examine the long-term sequelae of sciatic nerve crush in both WT and Cx32KO mice, a model of X-linked Charcot Marie Tooth disease, a subtype of inherited peripheral neuropathies. We present results from electrical nerve recordings done 14 to 27 days and 18 to 20 months after a unilateral sciatic nerve crush performed on 35 to 37-day old mice. Contrary to expectations, we find that whereas crush injury leads to a degradation of WT nerve function relative to uninjured nerves at 18 to 20 months, previously crushed Cx32KO nerves perform at the same level as their uninjured counterparts. Thus, 18 to 20 months after injury, WT nerves perform below the level of normal (uninjured) WT nerves in both motor and sensory nerve function. In contrast, measures of nerve function in Cx32KO mice are degraded for sensory axons but exhibit no additional dysfunction in motor axons. Early nerve injury has no negative electrophysiologic effect on the Cx32 KO motor nerves. Based on our prior demonstration that the transcriptomic profile of uninjured Cx32KO and injured WT sciatic nerves are very similar, the lack of an additional effect of crush on Cx32KO motor nerve parameters suggests that Cx32 knockout may implement a form of neuroprotection that limits the effects of subsequent injury.


Assuntos
Neuroproteção , Envelhecimento/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Conexinas , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Regeneração Nervosa , Nervo Isquiático , Proteína beta-1 de Junções Comunicantes
2.
Neurobiol Dis ; 30(2): 221-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18353664

RESUMO

Murine oligodendrocytes express the gap junction (GJ) proteins connexin32 (Cx32), Cx47, and Cx29. CNS phenotypes in patients with X-linked Charcot-Marie-Tooth disease may be caused by dominant effects of Cx32 mutations on other connexins. Here we examined the expression of Cx31.3 (the human ortholog of murine Cx29) in human brain and its relation to the other oligodendrocyte GJ proteins Cx32 and Cx47. Furthermore, we investigated in vitro whether Cx32 mutants with CNS manifestations affect the expression and function of Cx31.3. Cx31.3 was localized mostly in the gray matter along small myelinated fibers similar to Cx29 in rodent brain and was co-expressed with Cx32 in a subset of human oligodendrocytes. In HeLa cells Cx31.3 was localized at the cell membrane and appeared to form hemichannels but no GJs. Cx32 mutants with CNS manifestations were retained intracellularly, but did not alter the cellular localization or function of co-expressed Cx31.3. Thus, Cx31.3 shares many characteristics with its ortholog Cx29. Cx32 mutants with CNS phenotypes do not affect the trafficking or function of Cx31.3, and may have other toxic effects in oligodendrocytes.


Assuntos
Conexinas/biossíntese , Regulação da Expressão Gênica/fisiologia , Mutação , Proteínas do Tecido Nervoso/biossíntese , Oligodendroglia/fisiologia , Sequência de Aminoácidos , Comunicação Celular/genética , Conexinas/genética , Conexinas/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Oligodendroglia/química , Proteína beta-1 de Junções Comunicantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA