Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35355, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247240

RESUMO

OBJECTIVES: Currently, no consensus exists regarding the most durable prosthesis for pulmonary valve replacement. Bacterial cellulose is a resistant, nonbiodegradable, nonpyrogenic bioimplant with low hemolysis and clotting properties. We hypothesized that bacterial cellulose heart valve prostheses could be an attractive alternative for pulmonary valve replacement. METHODS: We conducted a large animal model experiment in three adult sheep. The animals underwent open-heart surgery and cardiopulmonary bypass for bacterial cellulose conduit implantation in the pulmonary position. The sheep were followed for seven months, and clinical and laboratory parameters were analyzed. Echocardiographic evaluations were performed at 3 and 7 months. After seven months, the sheep were sacrificed and an autopsy was performed. The explanted conduits were radiologically and histopathologically analyzed. RESULTS: All sheep survived the operation, showing good recovery and normal health status; no adverse events were noted during the 7-month postoperative follow-up. Interval laboratory findings were normal with no signs of hemolysis or infection. Echocardiographic analysis after 7 months revealed a normal mean pressure gradient with excellent cusp motion and coaptation; a trace of regurgitation was found in two sheep. X-ray analysis of the explanted conduits revealed no structural defects in the leaflets with minimal calcification. Histological examination showed slight thickening of the conduit by pannus formation. No material failure, no calcification inside the material, and only minor calcification extrinsic to the matrix were observed. CONCLUSIONS: This pilot study provides evidence that bacterial cellulose may be suitable for pulmonary valve prostheses and surgical pulmonary artery plasty. Further studies on the high pressure side of the left heart are needed.


Assuntos
Próteses Valvulares Cardíacas , Valva Pulmonar , Animais , Ovinos , Hemólise , Projetos Piloto , Valva Pulmonar/cirurgia , Celulose/farmacologia
2.
Biomedicines ; 9(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34572318

RESUMO

The markers of the tumor microenvironment (TME) are promising prognostic and predictive factors in oral squamous cell carcinoma (OSCC). The current study aims to analyze the immunohistochemical expression of programmed cell death-ligand 1 (PD-L1) and interleukin-33 (IL-33) in a cohort of 95 chemonaïve OSCCs. PD-L1 and IL-33 were assessed separately in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs). High PD-L1 expression in TILs was associated with better overall survival (OS) in univariate analysis. Tumors localized in the floor of the oral cavity and tongue tended to have a lower percentage of PD-L1-positive TCs when compared to other locations. PD-L1 expression on TCs had no prognostic significance when the whole cohort was analyzed. However, along with the T descriptor (TNM 8th), it was included in the multivariable model predicting death in carcinomas of the floor of the oral cavity and tongue (HR = 2.51, 95% CI = 1.97-5.28). In other locations, only nodal status was identified as an independent prognostic factor in multivariate analysis (HR = 0.24, 95% CI = 0.08-0.70). Expression of IL-33 had no impact on survival, but it was differently expressed in various locations. In conclusion, the prognostic significance of PD-L1 in oral cancer depends on the tumor site and type of cell expressing immune checkpoint receptor (TCs vs. TILs).

3.
Ann Biomed Eng ; 48(1): 133-143, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31309369

RESUMO

The left atrial appendage (LAA) is a small, finger-like extension of the left atrium and its exclusion is used as a treatment strategy to prevent ischemic stroke. Existing holdfast devices may damage the tissue, are unisized and not adjustable. A novel holdfast device for LAA exclusion devoid of these shortcomings was designed and 3D-printed using the Selective Laser Sintering (SLS) technology with polyamide powder and tested it on animal model. We selected the SLS 3D printing technology due to its wid14e availability and low production costs which could provide on-site 3D printing for specific patient. The purpose of this study was to evaluate the biocompatibility of the reported holdfast device and compare the histological results obtained for local tissue reactions to those obtained for an established grafting material. Thirty swine subdivided into two groups were examined. The LAA exclusion device was implanted and was either coated with a polyester vascular implant or not coated at all and the histological response to the device's presence was evaluated which is a standard approach to test the device biocompatibility. In all cases, complete occlusion was seen without any pathological findings during the incubation time. In both groups, the surface of the atrium under a holdfast device was smooth and shiny and had no clots. The foreign body reaction of the LAA holdfast device made of polyamide powder was insignificantly lower compared to the polyester graft. Thus, it fulfils the parameters of biocompatibility at the highest degree, and makes it suitable material for the manufacturing of LAA holdfast devices.


Assuntos
Apêndice Atrial/cirurgia , Materiais Biocompatíveis , Procedimentos Cirúrgicos Cardíacos/instrumentação , Desenho de Prótese , Animais , Feminino , Reação a Corpo Estranho , Masculino , Teste de Materiais , Nylons , Poliésteres , Impressão Tridimensional , Suínos
4.
Mater Sci Eng C Mater Biol Appl ; 97: 302-312, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678915

RESUMO

Bionanocellulose (BNC) is a clear polymer produced by the bacterium Gluconacetobacter xylinus. In our current study, "Research on the use of bacterial nanocellulose (BNC) in regenerative medicine as a function of the biological implants in cardiac and vascular surgery", we carried out material analysis, biochemical analysis, in vitro tests and in vivo animal model testing. In stage 1 of the project, we carried out physical and biological tests of BNC. This allowed us to modify subsequent samples of bacterial bionanocellulose. Finally, we obtained a sample that was accepted for testing on an animal model. That sample we define BNC1. Patches of BNC1 were then implanted into pigs' vessel walls. During the surgical procedures, we evaluated the technical aspects of sewing in the bioimplant, paying special attention to bleeding control and tightness of the suture line and the BNC1 bioimplant itself. We carried out studies evaluating the reaction of an animal body to an implantation of BNC1 into the circulatory system, including the general and local inflammatory reaction to the bioimplant. These studies allowed us to document the potential usefulness of BNC as a biological implant of the circulatory system and allowed for additional modifications of the BNC to improve the properties of this new implantable biological material.


Assuntos
Celulose/biossíntese , Celulose/química , Gluconacetobacter xylinus/metabolismo , Implantes Experimentais , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Procedimentos Cirúrgicos Cardíacos/instrumentação , Celulose/farmacologia , Hemólise/efeitos dos fármacos , Ácido Hialurônico/metabolismo , Implantes Experimentais/efeitos adversos , Inflamação/etiologia , Teste de Materiais , Suínos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA