Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Water Environ Res ; 85(3): 278-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23581243

RESUMO

The effects of microwave irradiation on filterability and dewaterability of waste activated sludge measured by capillary suction time (CST) and dry solids in sludge cake were investigated. The results showed that the optimum irradiation time improved filterability, but that further increase of the time was detrimental. Dewaterability was enhanced significantly and increased with microwave time. Filterability and dewaterability were improved 25 to 28% and 1.3 times at the optimum times of 30 and 90 seconds for the sludge of 5 g total suspended solids (TSS)/L and 7 g TSS/L, respectively. The floc size decreased slightly. Loosely bound extracellular polymeric substances (LB-EPS) decreased under optimum time, but tightly bound extracellular polymeric substances did not change significantly after short irradiation time. The results implied that LB-EPS played a more important role in the observed changes of filterability and dewaterability and that the double-layered extracellular polymeric substances extraction method showed marked implications to dewaterability.


Assuntos
Micro-Ondas , Polímeros/análise , Eliminação de Resíduos Líquidos/métodos , Esgotos/microbiologia
2.
Environ Technol ; 33(7-9): 857-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720410

RESUMO

This paper examines the chemical constituents of extracellular polymeric substances (EPS) and physicochemical properties of eight different sludge flocs from seven full-scale wastewater treatment plants. The physicochemical properties included floc properties (floc size, turbidity and effluent suspended solids (ESS) content of the supernatant), sludge volume index, capillary suction time and specific resistance to filtration. The relationships between the chemical constituents of EPS and the flocculation, settleability and dewaterability of sludge flocs were also assessed. The results showed that higher amounts of EPS were found in the municipal sludge flocs than in the industrial sludges. The content of tightly bound EPS (TB-EPS) was much greater than that of loosely bound EPS (LB-EPS). The amounts of total EPS, LB-EPS, TB-EPS and protein in LB-EPS were strongly related to ESS. The ratios of total protein to EPS and total carbohydrate to EPS showed positive correlation to the flocs size. It was surprising that there was no correlation between settleability or dewaterability and the chemical constituents of EPS.


Assuntos
Resíduos Industriais/análise , Polímeros/análise , Esgotos/química , Floculação , Gerenciamento de Resíduos
3.
ACS Appl Mater Interfaces ; 14(22): 25173-25182, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638566

RESUMO

The development of a biodegradable and shape-adaptable bioscaffold that can enhance local cytokine retention and bioactivity is essential for the application of immunotherapy in periodontal diseases. Here, we report a biodegradable, anti-inflammatory, and osteogenic ILGel that uses a physically cross-linked DNA hydrogel as a soft bioscaffold for the long-term sustained release of cytokine interleukin-10 (IL-10) to accelerate diabetic alveolar bone rebuilding. Porous microstructures of ILGel favored the encapsulation of IL-10 and maintained IL-10 bioactivity for at least 7 days. ILGel can be gradually degraded or hydrolyzed under physiological conditions, avoiding the potential undesired side effects on dental tissues. Long-term sustained release of bioactive IL-10 from ILGel not only promoted M2 macrophage polarization and attenuated periodontal inflammation but also triggered osteogenesis of mesenchymal stem cells (MSCs), leading to accelerated alveolar bone formation and healing of alveolar bone defects under diabetic conditions in vivo. ILGel treatment significantly accelerated the defect healing rate of diabetic alveolar injury up to 93.42 ± 4.6% on day 21 post treatment compared to that of free IL-10 treatment (63.30 ± 7.39%), with improved trabecular architectures. Our findings imply the potential application of the DNA hydrogel as the bioscaffold for cytokine-based immunotherapy in diabetic alveolar bone injury and other periodontal diseases.


Assuntos
Diabetes Mellitus , Doenças Periodontais , Regeneração Óssea , Citocinas , DNA , Preparações de Ação Retardada , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Interleucina-10 , Osteogênese/genética
4.
J Pharmacol Exp Ther ; 330(3): 911-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19502531

RESUMO

Baclofen is a racemic GABA(B) receptor agonist that has a number of significant pharmacokinetic limitations, including a narrow window of absorption in the upper small intestine and rapid clearance from the blood. Arbaclofen placarbil is a novel transported prodrug of the pharmacologically active R-isomer of baclofen designed to be absorbed throughout the intestine by both passive and active mechanisms via the monocarboxylate type 1 transporter. Arbaclofen placarbil is rapidly converted to R-baclofen in human and animal tissues in vitro. This conversion seems to be primarily catalyzed in human tissues by human carboxylesterase-2, a major carboxylesterase expressed at high levels in various tissues including human intestinal cells. Arbaclofen placarbil was efficiently absorbed and rapidly converted to R-baclofen after oral dosing in rats, dogs, and monkeys. Exposure to R-baclofen was proportional to arbaclofen placarbil dose, whereas exposure to intact prodrug was low. Arbaclofen placarbil demonstrated enhanced colonic absorption, i.e., 5-fold higher R-baclofen exposure in rats and 12-fold higher in monkeys compared with intracolonic administration of R-baclofen. Sustained release formulations of arbaclofen placarbil demonstrated sustained R-baclofen exposure in dogs with bioavailability up to 68%. In clinical use, arbaclofen placarbil may improve the treatment of patients with gastroesophageal reflux disease, spasticity, and numerous other conditions by prolonging exposure and decreasing the fluctuations in plasma levels of R-baclofen.


Assuntos
Baclofeno/farmacocinética , Agonistas GABAérgicos/farmacocinética , Pró-Fármacos/farmacocinética , Animais , Ligação Competitiva/efeitos dos fármacos , Butiratos/metabolismo , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Células Cultivadas , Química Farmacêutica , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Hidrólise , Absorção Intestinal , Isobutiratos , Isoenzimas/efeitos dos fármacos , Células LLC-PK1 , Masculino , Membranas Artificiais , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Vinho
5.
Macromol Biosci ; 19(5): e1800368, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811102

RESUMO

Endothelialization is an effective approach to prevent thrombus formation and enhance vascular graft survival. Surface modification of biomolecules has been proved to be effective in regulating endothelial cell behaviors. In this study, several peptides including YIGSR, RGD, and REDV sequences are covalently immobilized on the surface of electrospun silk fibroin scaffolds and the effects of combined application of these peptides on cell behaviors are studied. The results show that, compared with the scaffolds modified with single peptides, the scaffolds modified with dual peptides (YIGSR+RGD) could significantly enhance the proliferation of human umbilical vein endothelial cells (HUVECs). However, the combination of REDV+RGD or YIGSR+REDV does not promote the adhesion or proliferation of HUVECs. Notably, YIGSR-modified scaffolds improved HUVEC migration significantly in comparison to REDV- or RGD-modified groups. Moreover, its combination with either of these two peptides also presents excellent effect on cell migration. Thus, all the data suggest that the combined application of peptides might be a promising method to enhance the endothelialization of small-diameter vascular grafts.


Assuntos
Bioprótese , Prótese Vascular , Adesão Celular , Fibroínas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeos/química , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Poliésteres/química
6.
J Biomed Mater Res A ; 106(11): 2973-2983, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30260553

RESUMO

Nerve regeneration and function recovery remain challenges for tissue engineering. The application of suitable scaffold in tissue engineering has been demonstrated to be able to enhance nerve regeneration and differentiation. However, a desired scaffold must meet the requirements of good cytocompatibility and high electrical conductivity simultaneously. In this study, a conductive film composed of SF and graphene was successfully fabricated, which was applied to evaluate its effect on the neural differentiation of iPSCs. The conductive film was found to enhance the differentiation of iPSCs toward neurons. In addition, the differentiation was enhanced with graphene contents and highest value was obtained at graphene content of 4%. Thus, the results in this study suggested that 4% G/SF film might be a suitable biomaterial scaffold for application in neural regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2973-2983, 2018.


Assuntos
Fibroínas/química , Grafite/química , Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese , Neurônios/citologia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Bombyx/química , Células Cultivadas , Condutividade Elétrica , Engenharia Tecidual/métodos
7.
Chemosphere ; 84(9): 1250-5, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21620434

RESUMO

It is necessary to understand the bioflocculation, settling and dewatering characteristics in the activated sludge process in order to establish more efficient operational strategies. The influences of carbon source on the extracellular polymeric substances (EPS) and flocculation, settling and dewatering properties of the activated sludge were investigated. Laboratory-scale completely mixed activated sludge processes were used to grow the activated sludge with different carbon sources of starch, glucose and sodium acetate. The sludge fed with acetate had highest loosely bound EPS (LB-EPS) and that fed with starch lowest. The amount of tightly bound EPS (TB-EPS), protein content in LB-EPS, polysaccharide content and protein contents in TB-EPS, were independent of the influent carbon source. The polysaccharide content in LB-EPS of the activated sludge fed with sodium acetate was lower slightly than those of starch and glucose. The sludge also had a nearly consistent flocs size and the sludge volume index (SVI) value. ESS content of the sludge fed with sodium acetate was higher initially, although it was similar to those fed with glucose and starch finally. However, the specific resistance to filtration and normalized capillary suction time fluctuated first, but finally were stable at around 5.0×10(8)mkg(-1) and 3.5 s Lg(-1) SS, respectively. Only the protein content in LB-EPS weakly correlated with the flocs size and SVI of the activated sludge. But there was no correlation between any other EPS contents or components and the physicochemical properties of the activated sludge.


Assuntos
Biopolímeros/metabolismo , Carbono/farmacologia , Fenômenos Químicos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Esgotos/química , Floculação/efeitos dos fármacos , Esgotos/microbiologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA