Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Food Sci Nutr ; 73(5): 588-599, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35291895

RESUMO

The purpose of this article was to assess the existing systematic reviews and meta-analyses for the association between vitamin C intake and multiple health outcomes. A total of 76 meta-analyses (51 papers) of randomised controlled trials and observational studies with 63 unique health outcomes were identified. Dose-response analysis showed that vitamin C intake was associated with reduced risk of all-cause mortality, cardiovascular disease (CVD), oesophageal cancer, gastric cancer, cervical cancer and lung cancer with an increment of 50-100 mg per day. Beneficial associations were also identified for respiratory, neurological, ophthalmologic, musculoskeletal, renal and dental outcomes. Harmful associations were found for breast cancer and kidney stones for vitamin C supplement intake. The benefits of vitamin C intake outweigh the disadvantages for a range of health outcomes. However, the recommendation of vitamin C supplements needs to be cautious. More prospective studies and well-designed randomised controlled trials (RCTs) are needed.


Assuntos
Ácido Ascórbico , Doenças Cardiovasculares , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Humanos , Metanálise como Assunto , Estado Nutricional , Revisões Sistemáticas como Assunto
2.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927655

RESUMO

The aim of this study was to overcome drawbacks of the inhomogeneous dispersion and facile agglomeration of nano-ZnO/poly(N-isopropylacrylamide) composite hydrogels (nano-ZnO/PNIPAm composite hydrogels) during synthesis and improve the anti-mold property of the nano-ZnO/PNIPAm composite hydrogels. Here, nano-ZnO/PNIPAm composite hydrogels were prepared by the radical polymerization method. Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), differential scanning calorimeter (DSC), and dynamic light scattering (DLS) were used to characterize the effects of different dispersants on the particle sizes, dispersions, and phase transition characteristics of the nano-ZnO/PNIPAm composite hydrogels. The anti-mold properties of nano-ZnO/PNIPAm composite hydrogels were studied. Results revealed that the nano-ZnO/PNIPAm composite hydrogel prepared by the addition of nano-ZnO dispersion liquid exhibited the smallest particle size, the most homogeneous dispersion, and the highest stability. The addition of the dispersant did not change the phase transition characteristics of nano-ZnO/PNIPAm, and the nano-ZnO/PNIPAm composite hydrogels (Pf) exhibited good anti-mold properties to the bamboo mold.


Assuntos
Resinas Acrílicas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Hidrogéis/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Varredura Diferencial de Calorimetria , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
3.
PLoS One ; 19(1): e0297087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271321

RESUMO

Using spline interpolation to select proportions of similar materials, a comparative analysis of the fracturing behavior of sandstone specimens and similar material specimens was conducted through Brazilian splitting tests under multi-path loading. The study revealed that during stepwise loading, both sandstone and similar materials exhibited memory effects and plastic deformation. However, under constant velocity loading, the relationship between force and displacement in sandstone showed linearity after compaction. Employing MATLAB optimization algorithms for the inversion of acoustic emission event information, the distribution of fracture points, and the evolution of cracks were analyzed. The findings indicated that under stepwise loading, both sandstone and similar materials exhibited banded distribution of peak frequencies, with sandstone concentrated in the mid-low-frequency range and similar materials leaning towards the low-frequency range. The amplitude-frequency characteristics of acoustic emission signals suggested that initially, sandstone produced low-frequency, low-amplitude signals. As cracks developed, these signals gradually transformed into high-frequency, high-amplitude signals, ultimately leading to macroscopic failure. The ringing counts and b-values of sandstone displayed an approximate "W" shape distribution, with a subsequent decrease in b-values during final failure. In contrast, the acoustic emission counts were inversely related to b-values. Similar materials exhibited slightly more acoustic emission counts than sandstone, with relatively lower b-values. The crack development process of both sandstone and similar materials was confirmed through these observations. From the perspective of section initiation and local damage, sandstone and similar materials exhibited similar failure characteristics. The proportions of quartz sand: cement: water = 9:1:0.9 in similar materials demonstrated the most similar characteristics to sandstone in terms of mechanical loading, acoustic emission features, and failure morphology. This suggests that these similar materials can be used as substitutes for sandstone in analogous simulation experiments. The study provides theoretical support for understanding rock fracture mechanisms, offers guidance for the selection and proportioning of similar materials, and holds significance for predicting and controlling rock fracture behavior in engineering applications.


Assuntos
Acústica , Fraturas Ósseas , Humanos , Algoritmos , Cimentos Ósseos , Brasil , Inversão Cromossômica
4.
ACS Biomater Sci Eng ; 10(7): 4601-4611, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38847181

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal and highly malignant tumors. Sonodynamic therapy (SDT) is a new cancer treatment method. One of its unique advantages lies in the treatment of deep tumors due to its excellent tissue penetration ability caused by ultrasound (US). However, most sonosensitizers suffer from weak sonodynamic activity and poor tumor-targeting ability. In addition, small interfering RNA (siRNA) is a promising anticancer drug, and the efficacy of siRNA-based gene therapy largely depends on the cell impermeability of the gene carrier. Here, we designed and synthesized a cationic polythiophene derivative (PT2) that can be used as a siRNA carrier for gene therapy. Moreover, PT2 could generate singlet oxygen (1O2) and hydroxyl radicals (O2•-) under US irradiation, which suggests that PT2 could be used for SDT. Our study discovered that NUDT1 promoted HCC proliferation and inhibited intracellular ROS production. Therefore, si-NUDT1 was designed and synthesized. NUDT1 silencing can inhibit the proliferation of tumor cells and increase the production of intracellular ROS to further improve the efficacy of SDT. Then, si-NUDT1 assembled with PT2 and DSPE-PEG-FA to prepare a novel tumor-targeting nanodrug (PT2-siRNA@PEG-FA) for synergic SDT and gene therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Cátions , Terapia Genética , Neoplasias Hepáticas , Polímeros , RNA Interferente Pequeno , Tiofenos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Tiofenos/química , Tiofenos/uso terapêutico , Tiofenos/farmacologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Polímeros/química , Humanos , RNA Interferente Pequeno/genética , Terapia Genética/métodos , Cátions/química , Terapia por Ultrassom , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Células Hep G2 , Camundongos Nus
5.
Small ; 9(11): 1989-97, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23292791

RESUMO

Graphene oxide (GO) has been extensively explored in nanomedicine for its excellent physiochemical, electrical, and optical properties. Here, polyethylene glycol (PEG) and polyethylenimine (PEI) are covalently conjugated to GO via amide bonds, obtaining a physiologically stable dual-polymer-functionalized nano-GO conjugate (NGO-PEG-PEI) with ultra-small size. Compared with free PEI and the GO-PEI conjugate without PEGylation, NGO-PEG-PEI shows superior gene transfection efficiency without serum interference, as well as reduced cytotoxicity. Utilizing the NIR optical absorbance of NGO, the cellular uptake of NGO-PEG-PEI is shown to be enhanced under a low power NIR laser irradiation, owing to the mild photothermal heating that increases the cell membrane permeability without significantly damaging cells. As the results, remarkably enhanced plasmid DNA transfection efficiencies induced by the NIR laser are achieved using NGO-PEG-PEI as the light-responsive gene carrier. More importantly, it is shown that our NGO-PEG-PEI is able to deliver small interfering RNA (siRNA) into cells under the control of NIR light, resulting in obvious down-regulation of the target gene, Polo-like kinase 1 (Plk1), in the presence of laser irradiation. This study is the first to use photothermally enhanced intracellular trafficking of nanocarriers for light-controllable gene delivery. This work also encourages further explorations of functionalized nano-GO as a photocontrollable nanovector for combined photothermal and gene therapies.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Técnicas de Transferência de Genes , Fotoquímica , Polietilenoimina/química
6.
Biomacromolecules ; 13(3): 881-8, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22339316

RESUMO

Poly(ethylene oxide) grafted with 1.8 kDa branched polyethylenimine (PEO-g-PEI) copolymers with varying compositions, that is, PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI, were prepared and investigated for in vitro nonviral gene transfer. Gel electrophoresis assays showed that PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI could completely inhibit DNA migration at an N/P ratio of 4/1, 4/1, and 3/1, respectively. Dynamic light scattering (DLS) and zeta potential measurements revealed that all three graft copolymers were able to effectively condense DNA into small-sized (80-245 nm) particles with moderate positive surface charges (+7.2 ∼ +24.1 mV) at N/P ratios ranging from 5/1 to 40/1. The polyplex sizes and zeta-potentials intimately depended on PEO molecular weights and PEI graft densities. Notably, unlike 25 kDa PEI control, PEO-g-PEI polyplexes were stable against aggregation under physiological salt as well as 20% serum conditions due to the shielding effect of PEO. MTT assays in 293T cells demonstrated that PEO-g-PEI polyplexes had decreased cytotoxicity with increasing PEO molecular weights and decreasing PEI graft densities, wherein low cytotoxicities (cell viability >80%) were observed for polyplexes of PEO(13k)-g-22PEI, PEO(13k)-g-10PEI, and PEO(24k)-g-10PEI up to an N/P ratio of 20/1, 30/1, and 40/1, respectively. Interestingly, in vitro transfection results showed that PEO(13k)-g-10PEI polyplexes have the best transfection activity. For example, PEO(13k)-g-10PEI polyplexes formed at an N/P ratio of 20/1, which were essentially nontoxic (100% cell viability), displayed over 3- and 4-fold higher transfection efficiencies in 293T cells than 25 kDa PEI standard under serum-free and 10% serum conditions, respectively. Confocal laser scanning microscopy (CLSM) studies using Cy5-labeled DNA confirmed that these PEO-g-PEI copolymers could efficiently deliver DNA into the perinuclei region as well as into nuclei of 293T cells at an N/P ratio of 20/1 following 4 h transfection under 10% serum conditions. PEO-g-PEI polyplexes with superior colloidal stability, low cytotoxicity, and efficient transfection under serum conditions are highly promising for safe and efficient in vitro as well as in vivo gene transfection applications.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Coloides/química , DNA/química , DNA/metabolismo , Técnicas de Transferência de Genes , Polietilenoglicóis/química , Polietilenoimina/química , Células Cultivadas , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Peso Molecular , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Polímeros/química , Polímeros/farmacologia , Soro/metabolismo , Tensoativos/química , Tensoativos/farmacologia , Transfecção
7.
Biomaterials ; 283: 121428, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219148

RESUMO

Sonodynamic therapy (SDT) is emerging as a non-invasive strategy to eradicate tumors, but its therapeutic efficacy is still not ideal. To achieve more effective SDT, water insoluble sonosensitizer meso-5, 10, 15, 20-tetra(4-hydroxylphenyl)porphyrin (THPP) is here esterified with succinic acid conjugated oxaliplatin prodrug (Oxa(IV)SA2) and carboxyl group terminated PEG (PEG5k-COOH). The obtained covalent organic polymer (COP) of THPP-Oxa(IV)-PEG with good physiological stability, sonosensitization efficacy and glutathione (GSH) responsive oxalipatin responsive behaviors can induce effective immunogenic cancer cell death upon the ultrasound exposure. In addition, THPP-Oxa(IV)-PEG is shown to be a versatile carrier for both hydrophobic near infrared dye and radioisotope 99mTc, thereby enabling real-time tracking of its pharmacokinetics behavior under corresponding imaging facilities. Furthermore, treatment with THPP-Oxa(IV)-PEG injection and ultrasound exposure is shown to be most effectively in suppressing tumor growth, with 3 of 6 CT26 tumor bearing mice fully cured, ascribing to its high potency in eliciting profound antitumor immune responses. This work highlights a promising strategy in constructing multifunctional nanosonosensitizer as a potent immunogenic nanomedicine to enhance the treatment outcome of SDT.


Assuntos
Nanomedicina , Nanopartículas , Animais , Linhagem Celular Tumoral , Glutationa , Camundongos , Nanopartículas/química , Polímeros
8.
Sci Total Environ ; 850: 157701, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964747

RESUMO

China's iron and steel (IS) industry contributes approximately 16 % of the nation's total CO2 emissions. This study evaluates the environmental impact of each step in the production process based on the life cycle assessment method. It then explores potential deep decarbonisation pathways, developing an integrated dynamic model to meet the carbon neutrality target. The results reveal three primary findings. (1) In 2020, the blast furnace-basic oxygen furnace contributed significantly to the global warming potential -1.77 E-8 kg CO2 equivalents per year (eq/yr) higher than the electric arc furnace-and the blast furnace process makes the largest contribution in ironmaking (8.9E-9 kg CO2 eq/yr). (2) Converter negative energy steelmaking technology has the highest energy savings at 39.07 million tons of coal equivalent (Mtce) and an emissions-reduction potential of 72.01 Mt. Its mitigation cost is 69 CNY/t CO2, followed by thick-layer sintering (30.21 Mtce, 61.21 Mt. and 70 CNY/t CO2) and the application of dry vacuum system for molten steel degassing circulation (26.17 Mtce, 56.03 Mt. and 102 CNY/t CO2). (3) Technological improvement could significantly impact the IS industry, reducing CO2 emissions through production structure improvement, technological development and ultra-low emissions technology, from 789 Mt. in a business-as-usual scenario to 516 Mt., 261 Mt. and 157 Mt. in 2060, respectively.


Assuntos
Dióxido de Carbono , Aço , Carbono/análise , Dióxido de Carbono/análise , China , Carvão Mineral , Ferro , Oxigênio , Tecnologia
9.
Adv Sci (Weinh) ; 9(29): e2202039, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988145

RESUMO

Recent evidence has indicated that overexpression of the epigenetic reader bromodomain-containing protein 4 (BRD4) contributes to a poor prognosis of lung cancers, and the suppression of its expression promotes cell apoptosis and leads to tumor shrinkage. Proteolysis targeting chimera (PROTAC) has recently emerged as a promising therapeutic strategy with the capability to precisely degrade targeted proteins. Herein, a novel style of versatile nano-PROTAC (CREATE (CRV-LLC membrane/DS-PLGA/dBET6)) is developed, which is constructed by using a pH/GSH (glutathione)-responsive polymer (disulfide bond-linked poly(lactic-co-glycolic acid), DS-PLGA) to load BRD4-targeted PROTAC (dBET6), followed by the camouflage with engineered lung cancer cell membranes with dual targeting capability. Notably, CREATE remarkably confers simultaneous targeting ability to lung cancer cells and tumor-associated macrophages (TAMs). The pH/GSH-responsive design improves the release of dBET6 payload from nanoparticles to induce pronounced apoptosis of both cells, which synergistically inhibits tumor growth in both subcutaneous and orthotopic tumor-bearing mouse model. Furthermore, the efficient tumor inhibition is due to the direct elimination of lung cancer cells and TAMs, which remodels the tumor microenvironment. Taken together, the results elucidate the construction of a versatile nano-PROTAC enables to eliminate both lung cancer cells and TAMs, which opens a new avenue for efficient lung cancer therapy via PROTAC.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Animais , Camundongos , Dissulfetos/metabolismo , Epigênese Genética , Glutationa/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Polímeros , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral
10.
Mol Pharm ; 8(6): 2434-43, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21923163

RESUMO

The clinical success of gene therapy intimately relies on the development of safe and efficient gene carrier systems. We found here that 1.8 kDa polyethylenimine (PEI) following hydrophobic modification with lipoic acid (LA) mediated nontoxic and highly potent in vitro gene transfection in both HeLa and 293T cells. 1.8 kDa PEI-LA conjugates were prepared with controlled degree of substitution (DS) by coupling LA to PEI using carbodiimide chemistry. Gel electrophoresis measurements showed that the DNA binding ability of 1.8 kDa PEI was impaired by lipoylation, in which an N/P ratio of 2/1 and 4-6/1 was required for 1.8 kDa PEI and 1.8 kDa PEI-LA conjugates, respectively, to completely inhibit DNA migration. Interestingly, dynamic light scattering measurements (DLS) revealed that PEI-LA conjugates condensed DNA into much smaller sizes (183-84 nm) than unmodified 1.8 kDa PEI (444-139 nm) at N/P ratios ranging from 20/1 to 60/1. These polyplexes revealed similar surface charges of ca. +22 to +30 mV. 1.8 kDa PEI-LA(2) polyplexes formed at an N/P ratio of 10/1 were stable against exchange with 12-fold excess of negatively charged dextran sodium sulfate (DSS) relative to DNA phosphate groups while 1.8 kDa PEI controls dissociated at 6-fold excess of DSS, indicating that lipoylation of 1.8 kDa PEI resulted in stronger binding with DNA. Importantly, DNA was released from 1.8 kDa PEI-LA(2) polyplexes upon addition of 10 mM dithiothreitol (DTT). Reduction-triggered unpacking of 1.8 kDa PEI-LA(2) polyplexes was also confirmed by DLS. MTT assays demonstrated that all PEI-LA conjugates and polyplexes were essentially nontoxic to HeLa and 293T cells up to a tested concentration of 50 µg/mL and an N/P ratio of 80/1, respectively. The in vitro gene transfection studies in HeLa and 293T cells showed that lipoylation of 1.8 kDa PEI markedly boosted its transfection activity. For example, 1.8 kDa PEI-LA(2) polyplexes displayed 400-fold and 500-fold higher levels of gene expression than unmodified 1.8 kDa PEI controls, which were ca. 2-fold and 3-fold higher than 25 kDa PEI controls, in serum-free and 10% serum media, respectively. The transfection efficiency decreased with increasing DS, following an order of 1.8 kDa PEI-LA(2) > 1.8 kDa PEI-LA(4) > 1.8 kDa PEI-LA(6) ≫ 1.8 kDa PEI. Confocal laser scanning microscopy (CLSM) studies corroborated that 1.8 kDa PEI-LA(2) delivered and released DNA into the nuclei of HeLa cells more efficiently than 25 kDa PEI. These nontoxic 1.8 kDa PEI-LA conjugates form a superb basis for the development of targeting, biocompatible and highly efficient carriers of gene delivery.


Assuntos
DNA/química , Polietilenoimina/química , Ácido Tióctico/química , Transfecção , DNA/metabolismo , Eletroforese em Gel Bidimensional , Técnicas de Transferência de Genes , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Polietilenoimina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Tióctico/metabolismo
11.
Biomacromolecules ; 12(4): 1032-40, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21332180

RESUMO

Twenty-five kDa polyethylenimine (PEI) is one of the most efficient nonviral gene transfer agents currently applied as a golden standard for in vitro transfection. In this study, novel 25 kDa PEI derivatives with reductively cleavable cystamine periphery (PEI-Cys) were designed to reduce carrier-associated cytotoxicity and to enhance further the transfection activity. The Michael-type conjugate addition of 25 kDa PEI with N-tert-butoxycarbonyl-N'-acryloyl-cystamine (Ac-Cys-(t)Boc) and N-tert-butoxycarbonyl-N'-methacryloyl-cystamine (MAc-Cys-(t)Boc) followed by deprotection readily afforded PEI-Cys derivatives, denoted as PEI-(Cys)x(Ac) and PEI-(Cys)x(MAc), with degree of substitution (DS) ranging from 14 to 34 and 13 to 38, respectively. All PEI-Cys derivatives had higher buffer capacity than the parent 25 kDa PEI (21.2 to 23.1% versus 15.1%). Gel retardation and ethidium bromide exclusion assays showed that cystamine modification resulted in largely enhanced interactions with DNA. PEI-(Cys)x(Ac) could condense DNA into small-sized particles of 80-90 nm at and above an N/P ratio of 5/1, which were smaller than polyplexes of 25 kDa PEI (100-130 nm). In comparison, PEI-(Cys)x(MAc) condensed DNA into somewhat larger particles (100-180 nm at N/P ratios from 30/1 to 5/1). Gel retardation and dynamic light scattering (DLS) measurements showed that PEI-Cys polyplexes were quickly unpacked to release DNA in response to 10 mM dithiothreitol (DTT). These PEI-Cys derivatives revealed markedly decreased cytotoxicity as compared with 25 kDa PEI with IC(50) values of >100 mg/L and 50-75 mg/L for HeLa and 293T cells, respectively (corresponding IC(50) data of 25 kDa PEI are ca. 11 and 3 mg/L). The in vitro transfection experiments in HeLa and 293T cells using pGL3 as a reporter gene showed that gene transfection activity of PEI-Cys derivatives decreased with increasing DS and PEI-(Cys)x(MAc) exhibited higher transfection activity than PEI-(Cys)x(Ac) at similar DS. Notably, polyplexes of PEI-(Cys)14(Ac) and PEI-(Cys)13(MAc) showed significantly enhanced gene transfection efficiency (up to 4.1-fold) as compared with 25 kDa PEI formulation at an N/P ratio of 10/1 in both serum-free and 10% serum-containing conditions. The modification of PEI with reductively cleavable periphery appears to be a potential approach to develop safer and more efficient nonviral gene vectors.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina/química , Linhagem Celular , DNA/química , Humanos , Hidrólise , Tamanho da Partícula
13.
Biomaterials ; 255: 120190, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32563943

RESUMO

High expression of indoleamine 2,3-dioxygenase 1 (IDO1) is a major cause of tumor induced immunosuppression, and appears to be associated with poor prognosis in human colorectal cancer and some others. In this study, we construct a bifunctional liposome by self-assembly of oxaliplatin-prodrug (Oxa(IV)) conjugated phospholipid and alkylated NLG919 (aNLG), an IDO1 inhibitor, together with other commercial lipids. The obtained aNLG/Oxa(IV)-Lip can not only release cytotoxic oxaliplatin inside the reductive cytosol to trigger immunogenic cell death (ICD) of cancer cells, but also efficiently retard the degradation of tryptophan to immunosuppressive kynurenine via the NLG919 mediated inhibition of IDO1. Moreover, in vivo pharmacokinetic studies indicate that such aNLG/Oxa(IV)-Lip has a long blood circulation time, thereby enables highly-efficient passive tumor homing. Upon tumor accumulation, such aNLG/Oxa(IV)-Lip presents superior synergistic antitumor efficacies to both subcutaneous and orthotopic CT26 tumors, ascribing to significantly primed anti-tumor immunity of enhanced intratumoral infiltration of CD8+ T cells, scretion of cytotoxic cytokines and downregulation of immunosuppressive regulatory T cells. This work highlights that such bifunctional aNLG/Oxa(IV)-Lip is a potent candidate for future clinical translation owing to its excellent biocompatibility and high therapeutic efficacy.


Assuntos
Neoplasias Colorretais , Pró-Fármacos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Imidazóis , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Isoindóis , Lipossomos , Oxaliplatina
14.
Nat Nanotechnol ; 15(12): 1043-1052, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33139933

RESUMO

Cancer metastases and recurrence after surgical resection remain an important cause of treatment failure. Here we demonstrate a general strategy to fabricate personalized nanovaccines based on a cationic fluoropolymer for post-surgical cancer immunotherapy. Nanoparticles formed by mixing the fluoropolymer with a model antigen ovalbumin, induce dendritic cell maturation via the Toll-like receptor 4 (TLR4)-mediated signalling pathway, and promote antigen transportation into the cytosol of dendritic cells, which leads to an effective antigen cross-presentation. Such a nanovaccine inhibits established ovalbumin-expressing B16-OVA melanoma. More importantly, a mix of the fluoropolymer with cell membranes from resected autologous primary tumours synergizes with checkpoint blockade therapy to inhibit post-surgical tumour recurrence and metastases in two subcutaneous tumour models and an orthotopic breast cancer tumour. Furthermore, in the orthotopic tumour model, we observed a strong immune memory against tumour rechallenge. Our work offers a simple and general strategy for the preparation of personalized cancer vaccines to prevent post-operative cancer recurrence and metastasis.


Assuntos
Vacinas Anticâncer/uso terapêutico , Polímeros de Fluorcarboneto/uso terapêutico , Melanoma Experimental/prevenção & controle , Nanopartículas/uso terapêutico , Animais , Vacinas Anticâncer/química , Células Cultivadas , Feminino , Polímeros de Fluorcarboneto/química , Imunoterapia , Melanoma Experimental/imunologia , Melanoma Experimental/cirurgia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/química , Ovalbumina/uso terapêutico , Polietilenoimina/química , Polietilenoimina/uso terapêutico
15.
Eur J Pharm Sci ; 146: 105262, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060005

RESUMO

Supersaturation drug delivery system (SDDS) based on amorphous solid dispersion (ASD) is a widely used strategy to improve oral absorption of poorly water-soluble drugs by achieving a supersaturated state where drug concentration is significantly higher than drug solubility. However, dissolved drugs tend to recrystallize in gastrointestinal (GI) tract if without effective stabilizing excipients. In this paper, well-recognized polymer (polyvinylpyrrolidone, PVP) and lipid (phosphatidylcholine, PC) excipients are combined as ASD carrier, aiming at investigating the effects on evolution of in vitro supersaturation and in vivo plasma concentration of a model poorly soluble drug indomethacin (IND). Fundamental aspects including polymer/lipid composition ratio, drug loading (DL) degree and administration dose were investigated. The in vitro dissolution profiles of ASDs were assessed by supersaturation degree, duration, maximum achievable drug concentration and dose-normalized efficiency, and correlated with in vivo pharmacokinetic data. Results showed that both in vitro and in vivo concentration-time profiles of IND were significantly varying with abovementioned factors. Solution viscosity, solid-state properties and morphology of ASDs were related to the results. This study revealed fundamental mechanisms of PVP/PC mixture effect on IND supersaturation and oral bioavailability, demonstrating that polymer/lipid mixture could be used as a promising carrier to alter supersaturation profile and oral bioavailability of SDDS products.


Assuntos
Anti-Inflamatórios não Esteroides/sangue , Indometacina/sangue , Modelos Químicos , Fosfatidilcolinas/química , Povidona/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Sistemas de Liberação de Medicamentos , Excipientes , Indometacina/química , Indometacina/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Viscosidade
16.
ACS Nano ; 13(11): 13127-13135, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31710460

RESUMO

Tumor vaccines to induce robust immunity for cancer treatment have attracted tremendous interests in cancer immunotherapy. In this work, a type of cancer vaccine is prepared by using nanoscale coordination polymer (NCP) formed between Mn2+ ions and a nucleotide oligomerization binding domain 1 (Nod1) agonist, meso-2,6-diaminopimelic acid (DAP), as the organic ligand, to encapsulate a model protein antigen, ovalbumin (OVA). The obtained OVA@Mn-DAP nanoparticles could act as an effective tumor vaccine to promote the maturation of dendritic cells (DCs) as well as their antigen cross-presentation via increasing the cellular uptake of antigen and stimulating Nod1 pathway with DAP. Such OVA@Mn-DAP vaccine could migrate into lymph nodes after local injection, as revealed by in vivo magnetic resonance (MR) and fluorescence imaging. Importantly, vaccination with OVA@Mn-DAP could not only offer prophylactic to protect mice from challenged B16-OVA tumors but also result in significant therapeutic effect to inhibit growth of already-established tumors if in combination with anti-programmed cell death protein 1 antibody (α-PD-1) immune checkpoint blockade therapy. Therefore, this work presents an innovative platform to construct effective nanovaccine for tumor immunotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Ácido Diaminopimélico/imunologia , Imunoterapia , Melanoma/terapia , Ovalbumina/imunologia , Polímeros/uso terapêutico , Animais , Vacinas Anticâncer/química , Células Dendríticas/imunologia , Ácido Diaminopimélico/química , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/química , Polímeros/química , Células Tumorais Cultivadas
17.
ACS Nano ; 12(6): 5121-5129, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29771487

RESUMO

Tumor vaccines for cancer prevention and treatment have attracted tremendous interests in the area of cancer immunotherapy in recent years. In this work, we present a strategy to construct cancer vaccines by encapsulating immune-adjuvant nanoparticles with cancer cell membranes modified by mannose. Poly(d,l-lactide- co-glycolide) nanoparticles are first loaded with toll-like receptor 7 agonist, imiquimod (R837). Those adjuvant nanoparticles (NP-R) are then coated with cancer cell membranes (NP-R@M), whose surface proteins could act as tumor-specific antigens. With further modification with mannose moiety (NP-R@M-M), the obtained nanovaccine shows enhanced uptake by antigen presenting cells such as dendritic cells, which would then be stimulated to the maturation status to trigger antitumor immune responses. With great efficacy to delay tumor development as a prevention vaccine, vaccination with such NP-R@M-M in combination with checkpoint-blockade therapy further demonstrates outstanding therapeutic efficacy to treat established tumors. Therefore, our work presents an innovative way to fabricate cancer nanovaccines, which in principle may be applied for a wide range of tumor types.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Membrana Celular/química , Manose/imunologia , Nanopartículas/química , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Feminino , Imiquimode/química , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Imagem Óptica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
18.
Nat Commun ; 8(1): 902, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026068

RESUMO

Herein, an intelligent biodegradable hollow manganese dioxide (H-MnO2) nano-platform is developed for not only tumor microenvironment (TME)-specific imaging and on-demand drug release, but also modulation of hypoxic TME to enhance cancer therapy, resulting in comprehensive effects favoring anti-tumor immune responses. With hollow structures, H-MnO2 nanoshells post modification with polyethylene glycol (PEG) could be co-loaded with a photodynamic agent chlorine e6 (Ce6), and a chemotherapy drug doxorubicin (DOX). The obtained H-MnO2-PEG/C&D would be dissociated under reduced pH within TME to release loaded therapeutic molecules, and in the meantime induce decomposition of tumor endogenous H2O2 to relieve tumor hypoxia. As a result, a remarkable in vivo synergistic therapeutic effect is achieved through the combined chemo-photodynamic therapy, which simultaneously triggers a series of anti-tumor immune responses. Its further combination with checkpoint-blockade therapy would lead to inhibition of tumors at distant sites, promising for tumor metastasis treatment.MnO2 nanostructures are promising TME-responsive theranostic agents in cancer. Here, the authors develop a nano-platform based on hollow H-MnO2 nanoshells able to modulate the tissue microenvironment, release a drug and inhibit tumor growth alone or in combination with check-point blockade therapy.


Assuntos
Compostos de Manganês/química , Nanoconchas/química , Neoplasias Experimentais/terapia , Óxidos/química , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Feminino , Imunoterapia , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/imunologia , Polietilenoglicóis , Microambiente Tumoral
19.
Nat Commun ; 7: 13193, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767031

RESUMO

A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Imunoterapia/métodos , Nanopartículas/administração & dosagem , Neoplasias Experimentais/terapia , Fototerapia/métodos , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Ácido Láctico/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Quinolinas/administração & dosagem , Quinolinas/química
20.
Nanoscale ; 7(45): 19282-92, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26530014

RESUMO

Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( PEDOT: PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT: PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT: PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT: PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Células Dendríticas/imunologia , Macrófagos/imunologia , Nanopartículas/química , Polietilenoglicóis , Polímeros , Ácidos Sulfônicos , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/citologia , Macrófagos/citologia , Camundongos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA