Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23405-23421, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988576

RESUMO

Radiotherapy causes DNA damage by direct ionization and indirect generation of reactive oxygen species (ROS) thereby destroying cancer cells. However, ionizing radiation (IR) unexpectedly elicits metastasis and invasion of cancer cells by inducing cancer stem cells' (CSCs) properties. As BMI1 is a crucial gene that causes radioresistance and an unfavorable prognosis of hepatocellular carcinoma (HCC), BMI1 inhibitor PTC-209 has been encapsulated in a ROS-responsive liposome (LP(PTC-209)) to be temporally and spatially delivered to radioresistant HCC tissue. The ROS generated during IR was not only considered to directly cause tumor cell death but also be used as a stimulator to trigger ROS-responsive drug release from LP(PTC-209). The PTC-209 released into resistant HCC tissue under radiotherapy further led to cancer stem cell (CSC) differentiation and then recovered radiosensitivity of HCC tumor. The suppression of the radioresistant performance of LP(PTC-209) has been proved on radiosensitive and radioresistant Hepa1-6 CSC tumor models, respectively. Our study clarified the relationship between radiotherapy and cancer stemness and provided insights to achieve complete suppression of radioresistant HCC tumor by inhibiting cancer stemness.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/radioterapia , Lipossomos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação , Complexo Repressor Polycomb 1/metabolismo
2.
J Control Release ; 350: 525-537, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055597

RESUMO

To overcome drug resistance and improve precision theranostics for hepatocellular carcinoma (HCC), a nanoplatform with an "off/on" function for multimodality imaging (near-infrared-II (NIR-II) fluorescence imaging, magnetic resonance imaging (MRI), and photoacoustic imaging) and synergistic therapy (photodynamic therapy and ferroptosis) activated by an acidic pH in the tumor microenvironment is proposed. Although many photosensitizers with photodynamic effects have been reported, very few of them have outstanding photodynamic effect and high stability with response to endogenous stimuli capable of NIR-II imaging. Herein, a new amphiphilic photosensitizer SR780 derived from croconaine dye, was developed with satisfactory photodynamic effects and pH-responsive NIR-II imaging. Interestingly, it was deactivated by coordination with Fe3+ (SR780@Fe) and activated during their release under mild acidic condition. Ferroptosis can generate hydroxyl free radical and lipid peroxide, which aggravate the oxidative stress of tumor cells and mediate their death while depleting glutathione (GSH) to enhance photodynamic effect. In situ pH-activatable theranostic nanoplatform, SR780@Fe-PAE-GP, was thus developed by loading SR780@Fe with pH-responsive polymers, modified by a glypican-3 (GPC-3) receptor-targeting peptide. The synergistic antitumor effects were confirmed both in vitro and in vivo, and the tumor inhibition rate of the SR780@Fe-PAE-GP + L treatment group reached 98%.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Fotoquimioterapia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Glutationa , Glipicanas/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Peróxidos Lipídicos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/uso terapêutico , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA