Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 29(8): 1253-1273, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32129442

RESUMO

Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Dinamina II/deficiência , Doenças Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Axônios/metabolismo , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Dinamina II/genética , Heterozigoto , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Mutação/genética , Miopatias Congênitas Estruturais/patologia , Fenótipo
2.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646009

RESUMO

Fostered by the advances in the instrumental and analytical fields, in recent years the analysis of volatile organic compounds (VOCs) has emerged as a new frontier in medical diagnostics. VOCs analysis is a non-invasive, rapid and inexpensive strategy with promising potential in clinical diagnostic procedures. Since cellular metabolism is altered by diseases, the resulting metabolic effects on VOCs may serve as biomarkers for any given pathophysiologic condition. Human VOCs are released from biomatrices such as saliva, urine, skin emanations and exhaled breath and are derived from many metabolic pathways. In this review, the potential of VOCs present in saliva will be explored as a monitoring tool for several oral diseases, including gingivitis and periodontal disease, dental caries, and oral cancer. Moreover, the analytical state-of-the-art for salivary volatomics, e.g., the most common extraction techniques along with the current challenges and future perspectives will be addressed unequivocally.


Assuntos
Biomarcadores Tumorais/metabolismo , Cárie Dentária/metabolismo , Neoplasias Bucais/metabolismo , Doenças Periodontais/metabolismo , Saliva/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Humanos
3.
PLoS Biol ; 13(9): e1002258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406915

RESUMO

The pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination. Expression levels of the HDAC1/2 target gene myelin protein zero (P0) were reduced by half, accompanied by altered localization and stability of neurofascin (NFasc)155, NFasc186, and loss of Caspr and septate-like junctions. We identify P0 as a novel binding partner of NFasc155 and NFasc186, both in vivo and by in vitro adhesion assay. Furthermore, we demonstrate that HDAC1/2-dependent P0 expression is crucial for the maintenance of paranodal/nodal integrity and axonal function through interaction of P0 with neurofascins. In addition, we show that the latter mechanism is impaired by some P0 mutations that lead to late onset Charcot-Marie-Tooth disease.


Assuntos
Moléculas de Adesão Celular/metabolismo , Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Bainha de Mielina/fisiologia , Fatores de Crescimento Neural/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Doença de Charcot-Marie-Tooth/enzimologia , Técnicas de Inativação de Genes , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos
4.
Anal Bioanal Chem ; 410(18): 4459-4468, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29732495

RESUMO

Saliva is possibly the easiest biofluid to analyse and, despite its simple composition, contains relevant metabolic information. In this work, we explored the potential of the volatile composition of saliva samples as biosignatures for breast cancer (BC) non-invasive diagnosis. To achieve this, 106 saliva samples of BC patients and controls in two distinct geographic regions in Portugal and India were extracted and analysed using optimised headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME/GC-MS, 2 mL acidified saliva containing 10% NaCl, stirred (800 rpm) for 45 min at 38 °C and using the CAR/PDMS SPME fibre) followed by multivariate statistical analysis (MVSA). Over 120 volatiles from distinct chemical classes, with significant variations among the groups, were identified. MVSA retrieved a limited number of volatiles, viz. 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, phenol and p-tert-butyl-phenol (Portuguese samples) and acetic, propanoic, benzoic acids, 1,2-decanediol, 2-decanone, and decanal (Indian samples), statistically relevant for the discrimination of BC patients in the populations analysed. This work defines an experimental layout, HS-SPME/GC-MS followed by MVSA, suitable to characterise volatile fingerprints for saliva as putative biosignatures for BC non-invasive diagnosis. Here, it was applied to BC samples from geographically distant populations and good disease separation was obtained. Further studies using larger cohorts are therefore very pertinent to challenge and strengthen this proof-of-concept study. Graphical abstract ᅟ.


Assuntos
Neoplasias da Mama/diagnóstico , Saliva/química , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Neoplasias da Mama/etnologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Humanos , Concentração de Íons de Hidrogênio , Índia , Metabolômica , Pessoa de Meia-Idade , Concentração Osmolar , Portugal , Estudo de Prova de Conceito , Microextração em Fase Sólida , Temperatura , Adulto Jovem
5.
Hum Mol Genet ; 22(21): 4417-29, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813975

RESUMO

The ubiquitously expressed large GTPase Dynamin 2 (DNM2) plays a critical role in the regulation of intracellular membrane trafficking through its crucial function in membrane fission, particularly in endocytosis. Autosomal-dominant mutations in DNM2 cause tissue-specific human disorders. Different sets of DNM2 mutations are linked to dominant intermediate Charcot-Marie-Tooth neuropathy type B, a motor and sensory neuropathy affecting primarily peripheral nerves, or autosomal-dominant centronuclear myopathy (CNM) presenting with primary damage in skeletal muscles. To understand the underlying disease mechanisms, it is imperative to determine to which degree the primary affected cell types require DNM2. Thus, we used cell type-specific gene ablation to examine the consequences of DNM2 loss in skeletal muscle cells, the major relevant cell type involved in CNM. We found that DNM2 function in skeletal muscle is required for proper mouse development. Skeletal muscle-specific loss of DNM2 causes a reduction in muscle mass and in the numbers of muscle fibers, altered muscle fiber size distributions, irregular neuromuscular junctions (NMJs) and isolated degenerating intramuscular peripheral nerve fibers. Intriguingly, a lack of muscle-expressed DNM2 triggers an increase of lipid droplets (LDs) and mitochondrial defects. We conclude that loss of DNM2 function in skeletal muscles initiates a chain of harmful parallel and serial events, involving dysregulation of LDs and mitochondrial defects within altered muscle fibers, defective NMJs and peripheral nerve degeneration. These findings provide the essential basis for further studies on DNM2 function and malfunction in skeletal muscles in health and disease, potentially including metabolic diseases such as diabetes.


Assuntos
Doença de Charcot-Marie-Tooth/fisiopatologia , Dinamina II/deficiência , Dinamina II/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Miopatias Congênitas Estruturais/fisiopatologia , Junção Neuromuscular/fisiologia , Nervos Periféricos/fisiologia , Animais , Doença de Charcot-Marie-Tooth/genética , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Junção Neuromuscular/metabolismo , Especificidade de Órgãos , Nervos Periféricos/metabolismo
6.
Brain ; 137(Pt 3): 668-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24480485

RESUMO

The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Fenótipo
7.
Brain ; 135(Pt 12): 3567-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23171661

RESUMO

Studying the function and malfunction of genes and proteins associated with inherited forms of peripheral neuropathies has provided multiple clues to our understanding of myelinated nerves in health and disease. Here, we have generated a mouse model for the peripheral neuropathy Charcot-Marie-Tooth disease type 4H by constitutively disrupting the mouse orthologue of the suspected culprit gene FGD4 that encodes the small RhoGTPase Cdc42-guanine nucleotide exchange factor Frabin. Lack of Frabin/Fgd4 causes dysmyelination in mice in early peripheral nerve development, followed by profound myelin abnormalities and demyelination at later stages. At the age of 60 weeks, this was accompanied by electrophysiological deficits. By crossing mice carrying alleles of Frabin/Fgd4 flanked by loxP sequences with animals expressing Cre recombinase in a cell type-specific manner, we show that Schwann cell-autonomous Frabin/Fgd4 function is essential for proper myelination without detectable primary contributions from neurons. Deletion of Frabin/Fgd4 in Schwann cells of fully myelinated nerve fibres revealed that this protein is not only required for correct nerve development but also for accurate myelin maintenance. Moreover, we established that correct activation of Cdc42 is dependent on Frabin/Fgd4 function in healthy peripheral nerves. Genetic disruption of Cdc42 in Schwann cells of adult myelinated nerves resulted in myelin alterations similar to those observed in Frabin/Fgd4-deficient mice, indicating that Cdc42 and the Frabin/Fgd4-Cdc42 axis are critical for myelin homeostasis. In line with known regulatory roles of Cdc42, we found that Frabin/Fgd4 regulates Schwann cell endocytosis, a process that is increasingly recognized as a relevant mechanism in peripheral nerve pathophysiology. Taken together, our results indicate that regulation of Cdc42 by Frabin/Fgd4 in Schwann cells is critical for the structure and function of the peripheral nervous system. In particular, this regulatory link is continuously required in adult fully myelinated nerve fibres. Thus, mechanisms regulated by Frabin/Fgd4-Cdc42 are promising targets that can help to identify additional regulators of myelin development and homeostasis, which may crucially contribute also to malfunctions in different types of peripheral neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Proteínas dos Microfilamentos/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Células de Schwann/metabolismo , Fatores Etários , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Estimulação Elétrica , Endocitose/efeitos dos fármacos , Endocitose/genética , Potencial Evocado Motor/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Transmissão , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Bainha de Mielina/genética , RNA Interferente Pequeno/farmacologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transferrina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
8.
Sci Total Environ ; 892: 164531, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268142

RESUMO

Polystyrene (PS) is a crucial material for modern plastic manufacturers, but its widespread use and direct discard in the environment severely affect the food chain. This review provides a detailed study on the impact of PS microplastics (PS-MPs) on the food chain and the environment, including information on their mechanism, degradation process, and toxicity. The accumulation of PS-MPs in organisms' different organs leads to various adverse reactions, such as reduced body weight, premature deaths, pulmonary diseases, neurotoxicity, transgenerational issues, oxidative stress, metabolic alterations, ecotoxicity, immunotoxicity, and other dysfunctions. These consequences affect diverse elements in the food chain, spanning from aquatic species to mammals and humans. The review also addresses the need for sustainable plastic waste management policies and technological developments to prevent the adverse impacts of PS-MPs on the food chain. Additionally, it emphasizes the importance of developing a precise, flexible, and effective methodology for extracting and quantifying PS-MPs in food, considering their characteristics like particle size, polymer types, and forms. While several studies have focused on the toxicity of polystyrene microplastics (PS-MPs) in aquatic species, further investigation is required to understand the mechanisms by which they are transferred across multiple trophic levels. Therefore, this article serves as the first comprehensive review, examining the mechanism, degradation process, and toxicity of PS-MPs. It presents an analysis of the current research landscape of PS-MPs in the global food chain, providing insights for future researchers and governing organizations to adopt better approaches to managing PS-MPs and preventing their adverse impacts on the food chain. As far as we know this is the first article on this specific and impactant topic.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos/toxicidade , Cadeia Alimentar , Peso Corporal , Poluentes Químicos da Água/toxicidade , Mamíferos
9.
Glia ; 60(10): 1518-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22729949

RESUMO

Missense mutations affecting the LITAF gene (also known as SIMPLE) lead to the dominantly inherited peripheral neuropathy Charcot-Marie-Tooth disease type 1C (CMT1C). In this study, we sought to determine the requirement of Litaf function in peripheral nerves, the only known affected tissue in CMT1C. We reasoned that this knowledge is a prerequisite for a thorough understanding of the underlying disease mechanism with regard to potential contributions by Litaf loss of function. In addition, we anticipated to obtain valuable information about the basic function of the Litaf protein in peripheral nerves. To address these issues, we generated mice without Litaf expression using gene disruption in embryonic stem cells and analyzed Litaf-deficient peripheral nerves during development, in maintenance, and after injury. Our results show that Litaf function is not absolutely required for peripheral nerve development and maintenance. In injured nerves, however, we found that lack of Litaf led to increased numbers of macrophages during Wallerian degeneration, accelerated myelin destruction, and the emergence of more axonal sprouts. Consistent with these data, the migration of Litaf-deficient macrophages was increased upon chemokine stimulation. We conclude that loss of Litaf function is unlikely to be a major contributor to CMT1C, but modulating effects of macrophages need to be considered in the etiology of the disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/metabolismo , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Fatores de Transcrição/metabolismo , Degeneração Walleriana/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mutação/genética , Bainha de Mielina/metabolismo , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura , Proteínas Nucleares/genética , Nervos Periféricos/ultraestrutura , Neuropatia Ciática/complicações , Neuropatia Ciática/patologia , Fatores de Transcrição/genética , Degeneração Walleriana/etiologia , Degeneração Walleriana/patologia
10.
Sci Rep ; 8(1): 17725, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531924

RESUMO

Head and neck cancer (HNC) is a heterogeneous malignant disease with distinct global distribution. Metabolic adaptations of HNC are significantly gaining clinical interests nowadays. Here, we investigated effects of HNC on differential expression of volatile metabolites in human saliva. We applied headspace solid phase microextraction coupled with gas chromatography-mass spectrometry analysis of saliva samples collected from 59 human subjects (HNC - 32, Control - 27). We identified and quantified 48 volatile organic metabolites (VOMs) and observed profound effects of HNC on these metabolites. These effects were VOM specific and significantly differed in the biologically comparable healthy controls. HNC induced changes in salivary VOM composition were well attributed to in vivo metabolic effects. A panel of 15 VOMs with variable importance in projection (VIP) score >1, false discovery rate (FDR) corrected p-value < 0.05 and log2 fold change (log2 FC) value of ≥0.58/≤-0.58 were regarded as discriminatory metabolites of pathophysiological importance. Afterwards, receiver operator characteristic curve (ROC) projected certain VOMs viz., 1,4-dichlorobenzene, 1,2-decanediol, 2,5-bis1,1-dimethylethylphenol and E-3-decen-2-ol with profound metabolic effects of HNC and highest class segregation potential. Moreover, metabolic pathways analysis portrayed several dysregulated pathways in HNC, which enhanced our basic understanding on salivary VOM changes. Our observations could redefine several known/already investigated systemic phenomenons (e.g. biochemical pathways). These findings will inspire further research in this direction and may open unconventional avenues for non-invasive monitoring of HNC and its therapy in the future.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Redes e Vias Metabólicas/fisiologia , Saliva/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Microextração em Fase Sólida/métodos
11.
Science ; 328(5984): 1415-8, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20448149

RESUMO

The thickness of the myelin sheath that insulates axons is fitted for optimal nerve conduction velocity. Here, we show that, in Schwann cells, mammalian disks large homolog 1 (Dlg1) interacts with PTEN (phosphatase and tensin homolog deleted on chromosome 10) to inhibit axonal stimulation of myelination. This mechanism limits myelin sheath thickness and prevents overmyelination in mouse sciatic nerves. Removing this brake results also in myelin outfoldings and demyelination, characteristics of some peripheral neuropathies. Indeed, the Dlg1 brake is no longer functional in a mouse model of Charcot-Marie-Tooth disease. Therefore, negative regulation of myelination appears to be essential for optimization of nerve conduction velocity and myelin maintenance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Células de Schwann/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Axônios/fisiologia , Técnicas de Cocultura , Proteína 1 Homóloga a Discs-Large , Gânglios Espinais/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Condução Nervosa , Neuregulina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Proteínas Associadas SAP90-PSD95 , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA