Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 21(7): 1393-402, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16043336

RESUMO

Rhodopsin, the G protein-coupled receptor (GPCR) which mediates the sense of vision, was prepared from calf eyes and used as receptor enriched membrane fraction. In this study it was immobilized onto gold electrode by two different techniques: Langmuir-Blodgett (LB) and a strategy based on a self-assembled multilayer. We demonstrated that Langmuir and LB films of rhodopsin are not stable. Thus, in this study a new protein multilayer was prepared on gold electrode by building up layer-by-layer a self-assembled multilayer. It is composed of a mixed self-assembled monolayer formed by MHDA and biotinyl-PE, followed by a biotin-avidin system which allows binding of biotinylated antibody specific to rhodopsin. The immobilization of rhodopsin in membrane fraction, by the specific antibody bound previously on self-assembled multilayer, was monitored with electrochemical impedance spectroscopy (EIS). In addition, the specificity and sensitivity of this self-assembled multilayer system to the presence of rhodopsin were investigated. No effect was observed when the system was in contact with olfactory receptor I7 in membrane fraction used for control measurements. All these results demonstrate that rhodopsin can be immobilized efficiently, specifically, quantitatively and stably on gold electrode through the self-assembled multilayer.


Assuntos
Técnicas Biossensoriais/métodos , Materiais Revestidos Biocompatíveis/análise , Materiais Revestidos Biocompatíveis/química , Eletroquímica/métodos , Rodopsina/análise , Rodopsina/química , Análise Espectral/métodos , Adsorção , Técnicas Biossensoriais/instrumentação , Cristalização/métodos , Impedância Elétrica , Membranas Artificiais , Ligação Proteica , Rodopsina/ultraestrutura , Propriedades de Superfície
2.
Anal Chem ; 79(9): 3280-90, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17394286

RESUMO

There is substantial interest in engineering solid supports to achieve functional immobilization of membrane receptors both for investigation of their biological function and for the development of novel biosensors. Three simple and practical strategies for immobilization of a human olfactory receptor carried by nanosomes are presented. The basis of the functionalization of solid gold surfaces is a self-assembled monolayer (SAM) containing biotinyl groups. Biotinyl groups are subsequently used to attach neutravidin and then biotinylated monoclonal antibody directed against the receptor to allow its specific grafting. Surface plasmon resonance technique is implemented for real-time monitoring of step-by-step surface functionalization and, in addition, for testing the functional response of immobilized olfactory receptors. We show that OR1740 is functional when immobilized via a tag attached to its C-terminus, but not via its N-terminus. Finally, we demonstrate that gold surfaces can be patterned by the SAMs tested using microcontact printing. AFM images of immobilized nanosomes onto a patterned surface suggest that small nanosomes flatten and fuse into larger vesicles but do not merge into a continuous layer. The whole study emphasizes the outstanding performances of the BAT/PEGAT SAM, which could be useful for developing on-a-chip sensor formats for membrane receptor investigations and use.


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Nanopartículas/química , Receptores Odorantes/química , Anticorpos Monoclonais/química , Avidina/química , Humanos , Membranas Artificiais , Microscopia de Força Atômica/métodos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA