Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 13(9)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026109

RESUMO

Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultralow modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain-isolation effect that enhances not only the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some nonnegligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain-isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid-filled cavity. Examples in skin-mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano-acoustic responses.


Assuntos
Elastômeros/química , Líquidos Iônicos/química , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio
2.
J Mech Behav Biomed Mater ; 106: 103731, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250945

RESUMO

Grasses represent the most productive and widely grown crop family across the globe but are susceptible to structural failure (lodging) during growth (e.g., from wind). The mechanisms that contribute to structural failure in grass stems are poorly understood due to a lack of systematic studies of their biomechanical behavior. To this end, this study examines the biomechanical properties of sweet sorghum (Sorghum bicolor (L.) Moench), focusing on the time-dependent behavior of the stems. Specifically, we conducted uniaxial compression tests under ramp and creep loading on pith and stem specimens of the sorghum cultivar Della. The tests demonstrated significantly nonlinear and time-dependent stress-strain behavior in all samples. We surmise that this behavior arises from a combination of poroelasticity due to migration of water through the plant and viscoelasticity due to rearrangement of macromolecular networks, such as cellulose microfibrils and lignin matrices. Overall, our measurements demonstrate that sorghum is not a simple reversible elastic material. As such, a complete understanding of the conditions that lead to stem lodging will require knowledge of sorghum's time-dependent biomechanical properties. Of practical importance, the time-dependent biomechanical properties of the stem influence its mechanical stability under various loading conditions during growth in the field (e.g., different wind speeds).


Assuntos
Sorghum , Parede Celular , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA