Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 9677-9682, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37902816

RESUMO

In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.


Assuntos
Impressão Molecular , Nanopartículas , Polímeros Molecularmente Impressos , Epitopos , Polímeros/química , Nanopartículas/química , Receptores ErbB/metabolismo
2.
Analyst ; 148(11): 2633-2643, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191127

RESUMO

A novel enhanced fluorescent sensor system for zearalenone (ZON) determination in flour samples is presented. The ZON-selective molecularly imprinted polymer (MIP) films were developed with a computational modelling method and synthesised with cyclododecyl-2,4-dihydroxybenzoate as a "dummy" template and ethylene glycol methacrylate phosphate as a functional monomer acted as the selective recognition elements for ZON fluorescence detection. Spherical silver nanoparticles (AgNPs) were embedded in the MIP films' structure to enhance the sensor sensitivity. The imprinted films showed a high ZON recognition ability compared to non-imprinted films. Various factors that affected the measurement of the analysed sample were investigated and optimised. Embedding the AgNPs in the MIP films' structure led to an enhanced sensitivity (up to a 200-fold decrease of LOD) compared to unmodified MIP films. This fluorescent sensor system provided ZON analysis with high sensitivity, specificity, and a wider linear dynamic range of 5 ng mL-1 to 25 µg mL-1. An enhanced fluorescent sensor system based on MIP chips with embedded AgNPs could detect trace amounts of ZON in foods and feedstuffs with high sensitivity and selectivity.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Zearalenona , Polímeros Molecularmente Impressos , Prata , Nanopartículas Metálicas/química , Polímeros/química , Impressão Molecular/métodos
3.
J Mol Recognit ; 33(4): e2824, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31742810

RESUMO

A library of 17 nanoparticles made of acrylate and methacrylate copolymers is prepared, characterized, and screened against six epitopes of adeno-associated viruses (AAV)-neutralizing antibodies to assess their affinity and specificity. Peptide epitopes are immobilized onto the surface of glass beads, packed in filtration microplates, and incubated with fluorescein-labelled nanoparticles. Following intense washing, the affinity of nanoparticles to immobilized epitopes is assessed by measuring the fluorescence of captured nanoparticles. The results show that polar monomers, acrylic acid in particular, have a positive impact on polymer affinity towards all peptides used in this study. The presence of hydrophobic monomers, on other hand, has a negative impact on polymer binding. The composition of peptides used in this study has no noticeable impact on the affinity of synthesized nanoparticles. The affinity of nanoparticles with the highest affinity to peptide targets does not exceed millimolar level. Overall, it is found that the synthesized library showed modest affinity but lacked specificity, which should be further "tuned," for example, by using molecular imprinting to achieve an acceptable level of affinity and specificity for practical application.


Assuntos
Epitopos/metabolismo , Nanopartículas/química , Polímeros/química , Anticorpos Neutralizantes/metabolismo , Dependovirus/patogenicidade , Epitopos/genética , Impressão Molecular
4.
Langmuir ; 36(1): 279-283, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829602

RESUMO

An array of 4000 defined and addressable tripeptides on a polymer-coated glass slide is used to synthesize molecularly imprinted polymer (MIP) nanoparticles. This work is undertaken to systematically probe the impact of the peptide sequence on the ability to generate affinity MIPs. The polymer affinity is assessed by measuring the fluorescence of bound MIP nanoparticles at each peptide spot on the surface after washing the array to remove any low-affinity polymer. The generic composition commonly used in the preparation of MIPs against proteins seems to be equally suitable for imprinting hydrophobic and hydrophilic tripeptides. The amino acids frequently contributing to the formation of high-affinity MIPs include T, F, D, N, Y, W, and P. The amino acids that rarely contribute to the formation of high-affinity interactions with MIPs are G, V, A, L, I, and M. These observations are confirmed by computational modeling. The basic technique proposed here may be applicable in optimizing polymer compositions for the production of high-affinity MIPs or, more specifically, for the selection of appropriate amino acid sequences when peptide epitopes are used instead of whole protein imprinting.


Assuntos
Polímeros Molecularmente Impressos/síntese química , Peptídeos/química , Simulação de Dinâmica Molecular , Polímeros Molecularmente Impressos/química
5.
Analyst ; 145(12): 4224-4232, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32496501

RESUMO

A novel molecularly imprinted polymer nanoparticle-based assay (MINA) performed in magnetic microplates was developed as an improved high-quality alternative to existing antibody-based immunoassays. MINA is a generic technology that can be adapted for biomarker detection in biological samples. Herein, we demonstrate the applicability of the MINA assay for the detection of leukotrienes and insulin in biological samples. MINA, used in a competition format, has allowed the detection of LTE4 in urine in a concentration range from 0.45 to 364 pM, with a LOD of 0.73 pM. MINA, used in a competition format, has allowed the detection of insulin in plasma in a concentration range from 25 to 2500 pM, with a LOD of 27 pM. This assay has shown comparable performance for LTE4 and insulin detection to existing chromatographic techniques (LC-MS/MS) and immunoassays in clinically relevant concentrations. The main advantages of this assay are the efficient and low cost fabrication, preparation of synthetic binders without the use of animals, and fewer steps used in the assay protocol as compared to traditional immunoassays.


Assuntos
Insulina/sangue , Leucotrieno E4/urina , Nanopartículas Magnéticas de Óxido de Ferro/química , Impressão Molecular , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Polímeros/química , Estudo de Prova de Conceito , Espectrometria de Fluorescência/métodos
6.
Sensors (Basel) ; 20(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752255

RESUMO

The combination of the generic mobile technology and inherent stability, versatility and cost-effectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with Fusarium contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element. The recorded image is further processed using a mobile application. It shows here a first example of the zearalenone-specific MIP membranes synthesised in situ using "dummy template"-based approach with cyclododecyl 2, 4-dihydroxybenzoate as the template and 1-allylpiperazine as a functional monomer. The novel smartphone sensor system based on optimized MIP membranes provides zearalenone detection in cereal samples within the range of 1-10 µg mL-1 demonstrating a detection limit of 1 µg mL-1 in a direct sensing mode. In order to reach the level of sensitivity required for practical application, a competitive sensing mode is also developed. It is based on application of a highly-fluorescent structural analogue of zearalenone (2-[(pyrene-l-carbonyl) amino]ethyl 2,4-dihydroxybenzoate) which is capable to compete with the target mycotoxin for the binding to zearalenone-selective sites in the membrane's structure. The competitive mode increases 100 times the sensor's sensitivity and allows detecting zearalenone at 10 ng mL-1. The linear dynamic range in this case comprised 10-100 ng mL-1. The sensor system is tested and found effective for zearalenone detection in maize, wheat and rye flour samples both spiked and naturally contaminated. The developed MIP membrane-based smartphone sensor system is an example of a novel, inexpensive tool for food quality analysis, which is portable and can be used for the "field" measurements and easily translated into the practice.


Assuntos
Fusarium , Impressão Molecular , Grão Comestível , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos , Polímeros , Smartphone
7.
Anal Chem ; 91(1): 958-964, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30518208

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is a widely used standard method for sensitive detection of analytes of environmental, clinical, or biotechnological interest. However, ELISA has clear drawbacks related to the use of relatively unstable antibodies and enzyme conjugates and the need for several steps such as washing of nonbound conjugates and addition of dye reagents. Herein, we introduce a new completely abiotic assay where antibodies and enzymes are replaced with fluorescent molecularly imprinted polymer nanoparticles (nanoMIPs) and target-conjugated magnetic nanoparticles, which acted as both reporter probes and binding agents. The components of the molecularly imprinted polymer nanoparticle assay (MINA) are assembled in microtiter plates fitted with magnetic inserts. We have compared the performance of a new magnetic assay with molecularly imprinted polymer (MIP)-based ELISA for the detection of methyl parathion (MP). Both assays have shown high sensitivity toward allowing detection of MP at picomolar concentrations without any cross-reactivity against chlorpyriphos and fenthion. The fully abiotic assays were also proven to detect analyte in real samples such as tap water and milk. Unlike ELISA-based systems, the novel assay required no washing steps or addition of enzyme substrates, making it more user-friendly and suitable for high throughput screening.


Assuntos
Ensaio de Imunoadsorção Enzimática , Metil Paration/análise , Impressão Molecular , Nanopartículas/química , Polímeros/química
8.
Analyst ; 144(15): 4639-4646, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31250860

RESUMO

A selective electrochemical sensor for direct detection of cocaine was developed based on molecularly imprinted polymers electropolymerized onto graphene-modified electrodes. Palladium nanoparticles were integrated in the sensing layer for the benefit of enhancing the communication between the imprinted sites and the electrode and improving their homogeneous distribution. The molecularly imprinted polymer was synthesized by cyclic voltammetry using p-aminobenzoic acid as a high affinity monomer selected by computational modeling, and cocaine as a template molecule. Experimental parameters related to the electrochemical deposition of palladium nanoparticles, pH, composition of the electropolymerization mixture, extraction and rebinding conditions were studied and optimized. Under optimized conditions, the oxidation peak current varied linearly with cocaine concentration in the range of 100-500 µM, with a detection limit of 50 µM (RSD 0.71%, n = 3). The molecularly imprinted sensor was able to detect cocaine in saliva and river water with good recoveries after sample pretreatment and was successfully applied for screening real street samples for cocaine.


Assuntos
Materiais Biomiméticos/química , Cocaína/análise , Polímeros/química , Ácido 4-Aminobenzoico/química , Materiais Biomiméticos/síntese química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Galvanoplastia , Grafite/química , Drogas Ilícitas/análise , Ligantes , Limite de Detecção , Nanopartículas Metálicas/química , Impressão Molecular , Paládio/química , Polimerização , Polímeros/síntese química , Rios/química , Saliva/química , Poluentes Químicos da Água/química
9.
Nano Lett ; 18(8): 4641-4646, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29969563

RESUMO

Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon binding, doxorubicin-loaded anti-EGFR nanoMIPs elicited cytotoxicity and apoptosis only in those cells that over-expressed EGFR. Thus, this approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets. Furthermore, nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Receptores ErbB/metabolismo , Impressão Molecular/métodos , Nanopartículas/química , Antineoplásicos/administração & dosagem , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Humanos , Terapia de Alvo Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
10.
Angew Chem Int Ed Engl ; 58(3): 727-730, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30308085

RESUMO

We report an approach integrating the synthesis of protein-imprinted nanogels ("plastic antibodies") with a highly sensitive assay employing templates attached to magnetic carriers. The enzymes trypsin and pepsin were immobilized on amino-functionalized solgel-coated magnetic nanoparticles (magNPs). Lightly crosslinked fluorescently doped polyacrylamide nanogels were subsequently produced by high-dilution polymerization of monomers in the presence of the magNPs. The nanogels were characterised by a novel competitive fluorescence assay employing identical protein-conjugated nanoparticles as ligands to reversibly immobilize the corresponding nanogels. Both nanogels exhibited Kd <10 pM for their respective target protein and low cross-reactivity with five reference proteins. This agrees with affinities reported for solid-phase-synthesized nanogels prepared using low-surface-area glass-bead supports. This approach simplifies the development and production of plastic antibodies and offers direct access to a practical bioassay.


Assuntos
Resinas Acrílicas/química , Nanopartículas de Magnetita/química , Nanogéis/química , Pepsina A/química , Tripsina/química , Resinas Acrílicas/síntese química , Aminação , Animais , Bovinos , Enzimas Imobilizadas/química , Impressão Molecular , Polimerização , Suínos
11.
Analyst ; 143(14): 3481-3488, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923557

RESUMO

The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1). Unfortunately, ELISA is not always efficient due to the instability of the antibody and enzyme components in the immunoassay, the presence of natural enzyme inhibitors in the samples and the high levels of non-specific protein binding. Additionally, the production of antibodies for ELISA can be time-consuming and costly, due to the involvement of animals in the manufacturing process. To overcome these limiting factors, a molecularly imprinted nanoparticle based assay (MINA) has been developed, where the molecularly imprinted nanoparticles (nanoMIPs) replace the primary antibody used in a competitive ELISA. Herein, computational modelling was used to design the nanoMIPs by selecting monomers that specifically interact with FB1. The affinity of the monomers to FB1 was verified by measuring their binding in affinity chromatography experiments. The nanoMIPs were produced by solid phase synthesis and the results showed that nanoMIPs had a hydrodynamic diameter of around 249 ± 29 nm. The assay tested in model samples is highly selective and does not show cross-reactivity with other mycotoxins such as fumonisin B2 (FB2), aflatoxin B1 (AFB1), citrinin (CTT), zearalenone (ZEA), and deoxynivalenol (DON). The MINA allows the detection of FB1 in the concentration range of 10 pM-10 nM with a detection limit of 1.9 pM and a recovery of 108.13-113.76%.


Assuntos
Ração Animal/análise , Fumonisinas/análise , Impressão Molecular , Nanopartículas , Contaminação de Alimentos , Micotoxinas , Polímeros
12.
Nano Lett ; 17(4): 2307-2312, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28350162

RESUMO

One of the mechanisms responsible for cancer-induced increased blood supply in malignant neoplasms is the overexpression of vascular endothelial growth factor (VEGF). Several antibodies for VEGF targeting have been produced for both imaging and therapy. Molecularly imprinted polymer nanoparticles, nanoMIPs, however, offer significant advantages over antibodies, in particular in relation to improved stability, speed of design, cost and control over functionalization. In the present study, the successful production of nanoMIPs against human VEGF is reported for the first time. NanoMIPs were coupled with quantum dots (QDs) for cancer imaging. The composite nanoparticles exhibited specific homing toward human melanoma cell xenografts, overexpressing hVEGF, in zebrafish embryos. No evidence of this accumulation was observed in control organisms. These results indicate that nanoMIPs are promising materials which can be considered for advancing molecular oncological research, in particular when antibodies are less desirable due to their immunogenicity or long production time.


Assuntos
Impressão Molecular , Nanopartículas/química , Polímeros/química , Fator A de Crescimento do Endotélio Vascular/análise , Aminoácidos/química , Animais , Linhagem Celular Tumoral , Embrião não Mamífero/metabolismo , Epitopos , Corantes Fluorescentes/química , Xenoenxertos , Humanos , Melanoma/metabolismo , Tamanho da Partícula , Ligação Proteica , Proteínas Recombinantes/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo
13.
Angew Chem Int Ed Engl ; 56(52): 16555-16558, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29140595

RESUMO

We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Polímeros/química , Percepção de Quorum/efeitos dos fármacos , Streptococcus pneumoniae/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Anti-Infecciosos/química , Proteínas de Bactérias/química , Espectrometria de Massas , Impressão Molecular , Peptídeos/química , Peptídeos/metabolismo , Virulência/efeitos dos fármacos
14.
Macromol Rapid Commun ; 37(24): 2011-2016, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27862601

RESUMO

Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally.


Assuntos
Modelos Químicos , Impressão Molecular/métodos , Polímeros/química , Polímeros/síntese química
15.
Cutan Ocul Toxicol ; 35(2): 137-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26339920

RESUMO

Rapid decontamination is vital to alleviate adverse health effects following dermal exposure to hazardous materials. There is an abundance of materials and products which can be utilised to remove hazardous materials from the skin. In this study, a total of 15 products were evaluated, 10 of which were commercial or military products and five were novel (molecular imprinted) polymers. The efficacies of these products were evaluated against a 10 µl droplet of (14)C-methyl salicylate applied to the surface of porcine skin mounted on static diffusion cells. The current UK military decontaminant (Fuller's earth) performed well, retaining 83% of the dose over 24 h and served as a benchmark to compare with the other test products. The five most effective test products were Fuller's earth (the current UK military decontaminant), Fast-Act® and three novel polymers [based on itaconic acid, 2-trifluoromethylacrylic acid and N,N-methylenebis(acrylamide)]. Five products (medical moist-free wipes, 5% FloraFree™ solution, normal baby wipes, baby wipes for sensitive skin and Diphotérine™) enhanced the dermal absorption of (14)C-methyl salicylate. Further work is required to establish the performance of the most effective products identified in this study against chemical warfare agents.


Assuntos
Substâncias para a Guerra Química/farmacocinética , Descontaminação/métodos , Salicilatos/farmacocinética , Absorção Cutânea/efeitos dos fármacos , Compostos de Alumínio/farmacologia , Animais , Feminino , Técnicas In Vitro , Compostos de Magnésio/farmacologia , Impressão Molecular , Polímeros/farmacologia , Silicatos/farmacologia , Pele/metabolismo , Suínos
16.
Anal Chem ; 87(13): 6801-7, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26008649

RESUMO

Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.


Assuntos
Impressão Molecular , Polímeros/química , Vírus/isolamento & purificação , Microbiologia da Água , Microscopia Eletrônica de Transmissão
17.
Analyst ; 140(9): 3113-20, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751126

RESUMO

Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Curcumina/administração & dosagem , Preparações de Ação Retardada/química , Imãs/química , Impressão Molecular/métodos , Polímeros/química , Humanos
18.
Analyst ; 139(9): 2229-36, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24634909

RESUMO

An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3 ± 0.1 × 10(-8) M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (∼700 µM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 µM of VA.


Assuntos
Antibacterianos/análise , Impressão Molecular , Nanopartículas , Polímeros/química , Vancomicina/análise , Animais , Antibacterianos/sangue , Limite de Detecção , Suínos , Vancomicina/sangue
19.
Anal Methods ; 16(5): 742-750, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224108

RESUMO

A high-performance impedimetric sensing platform was designed to detect proteins by employing molecularly imprinted polymeric nanoparticles (nanoMIPs) as selective receptors. This was achieved via the combination of the nanoMIPs with a self-assembled thioctic acid (SAM-TA) monolayer onto screen-printed gold electrodes, providing stable covalent attachment of the selective binder to the transducer. Taguchi design has been modelled to achieve the optimal level of sensor fabrication parameters and to maximise the immobilisation of nanoMIPs and their response (e.g. the response of imprinted polymers compared with the non-imprinted control). The developed sensor was tested towards a range of concentrations of trypsin dissolved in ammonium acetate (pH = 6) and showed promising applicability in artificial saliva, with a recovery percentage between 103 and 107%.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Nanopartículas , Tripsina , Polímeros , Testes Imediatos
20.
Anal Chem ; 85(17): 8462-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23947402

RESUMO

A simple and straightforward technique for coating microplate wells with molecularly imprinted polymer nanoparticles (nanoMIPs) to develop assays similar to the enzyme-linked immunosorbent assay (ELISA) is presented here for the first time. NanoMIPs were synthesized by a solid-phase approach with an immobilized vancomycin (template) and characterized using Biacore 3000, dynamic light scattering, and electron microscopy. Immobilization, blocking, and washing conditions were optimized in microplate format. The detection of vancomycin was achieved in competitive binding experiments with a horseradish peroxidase-vancomycin conjugate. The assay was capable of measuring vancomycin in buffer and in blood plasma within the range of 0.001-70 nM with a detection limit of 0.0025 nM (2.5 pM). The sensitivity of the assay was 3 orders of magnitude better than a previously described ELISA based on antibodies. In these experiments, nanoMIPs have shown high affinity and minimal interference from blood plasma components. Immobilized nanoMIPs were stored for 1 month at room temperature without any detrimental effects to their binding properties. The high affinity of nanoMIPs and the lack of a requirement for cold chain logistics make them an attractive alternative to traditional antibodies used in ELISA.


Assuntos
Impressão Molecular/métodos , Nanopartículas/química , Polímeros/química , Vancomicina/análise , Animais , Anticorpos/análise , Anticorpos/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Suínos , Vancomicina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA