Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769407

RESUMO

Cultivated cardoon (Cynara cardunculus var. altilis L.) is a promising candidate species for the development of plant cell cultures suitable for large-scale biomass production and recovery of nutraceuticals. We set up a protocol for Agrobacterium tumefaciens-mediated transformation, which can be used for the improvement of cardoon cell cultures in a frame of biorefinery. As high lignin content determines lower saccharification yields for the biomass, we opted for a biotechnological approach, with the purpose of reducing lignin content; we generated transgenic lines overexpressing the Arabidopsis thaliana MYB4 transcription factor, a known repressor of lignin/flavonoid biosynthesis. Here, we report a comprehensive characterization, including metabolic and transcriptomic analyses of AtMYB4 overexpression cardoon lines, in comparison to wild type, underlining favorable traits for their use in biorefinery. Among these, the improved accessibility of the lignocellulosic biomass to degrading enzymes due to depletion of lignin content, the unexpected increased growth rates, and the valuable nutraceutical profiles, in particular for hydroxycinnamic/caffeoylquinic and fatty acids profiles.


Assuntos
Ácidos Cumáricos/metabolismo , Cynara/genética , Cynara/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Técnicas de Cultura de Células , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Ácido Quínico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcriptoma
2.
BMC Plant Biol ; 17(1): 20, 2017 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-28109190

RESUMO

BACKGROUND: Fusarium verticillioides is a common maize pathogen causing ear rot (FER) and contamination of the grains with the fumonisin B1 (FB1) mycotoxin. Resistance to FER and FB1 contamination are quantitative traits, affected by environmental conditions, and completely resistant maize genotypes to the pathogen are so far unknown. In order to uncover genomic regions associated to reduced FER and FB1 contamination and identify molecular markers for assisted selection, an F2:3 population of 188 progenies was developed crossing CO441 (resistant) and CO354 (susceptible) genotypes. FER severity and FB1 contamination content were evaluated over 2 years and sowing dates (early and late) in ears artificially inoculated with F. verticillioides by the use of either side-needle or toothpick inoculation techniques. RESULTS: Weather conditions significantly changed in the two phenotyping seasons and FER and FB1 content distribution significantly differed in the F3 progenies according to the year and the sowing time. Significant positive correlations (P < 0.01) were detected between FER and FB1 contamination, ranging from 0.72 to 0.81. A low positive correlation was determined between FB1 contamination and silking time (DTS). A genetic map was generated for the cross, based on 41 microsatellite markers and 342 single nucleotide polymorphisms (SNPs) derived from Genotyping-by-Sequencing (GBS). QTL analyses revealed 15 QTLs for FER, 17 QTLs for FB1 contamination and nine QTLs for DTS. Eight QTLs located on linkage group (LG) 1, 2, 3, 6, 7 and 9 were in common between FER and FB1, making possible the selection of genotypes with both low disease severity and low fumonisin contamination. Moreover, five QTLs on LGs 1, 2, 4, 5 and 9 located close to previously reported QTLs for resistance to other mycotoxigenic fungi. Finally, 24 candidate genes for resistance to F. verticillioides are proposed combining previous transcriptomic data with QTL mapping. CONCLUSIONS: This study identified a set of QTLs and candidate genes that could accelerate breeding for resistance of maize lines showing reduced disease severity and low mycotoxin contamination determined by F. verticillioides.


Assuntos
Fumonisinas/metabolismo , Fusarium/fisiologia , Locos de Características Quantitativas , Zea mays/genética , Zea mays/microbiologia , Genótipo , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Zea mays/metabolismo
3.
Nat Genet ; 45(5): 487-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525075

RESUMO

Rosaceae is the most important fruit-producing clade, and its key commercially relevant genera (Fragaria, Rosa, Rubus and Prunus) show broadly diverse growth habits, fruit types and compact diploid genomes. Peach, a diploid Prunus species, is one of the best genetically characterized deciduous trees. Here we describe the high-quality genome sequence of peach obtained from a completely homozygous genotype. We obtained a complete chromosome-scale assembly using Sanger whole-genome shotgun methods. We predicted 27,852 protein-coding genes, as well as noncoding RNAs. We investigated the path of peach domestication through whole-genome resequencing of 14 Prunus accessions. The analyses suggest major genetic bottlenecks that have substantially shaped peach genome diversity. Furthermore, comparative analyses showed that peach has not undergone recent whole-genome duplication, and even though the ancestral triplicated blocks in peach are fragmentary compared to those in grape, all seven paleosets of paralogs from the putative paleoancestor are detectable.


Assuntos
Agricultura , Evolução Biológica , Variação Genética , Genoma de Planta/genética , Prunus/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Polímeros/metabolismo , Propanóis/metabolismo , Prunus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA