RESUMO
The optimal approach to COVID-19 surveillance in congregate populations remains unclear. Our study at the US Naval Academy in Annapolis, Maryland, USA, assessed the concordance of antibody prevalence in longitudinally collected dried blood spots and saliva in a setting of frequent PCR-based testing. Our findings highlight the utility of salivary-based surveillance.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Saliva , Teste para COVID-19 , Técnicas de Laboratório ClínicoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic that has infected over 36 million and killed over 1 million people. Informed implementation of government public health policies depends on accurate data on SARS-CoV-2 immunity at a population scale. We hypothesized that detection of SARS-CoV-2 salivary antibodies could serve as a noninvasive alternative to serological testing for monitoring of SARS-CoV-2 infection and seropositivity at a population scale. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology that comprised 12 CoV antigens, mostly derived from SARS-CoV-2 nucleocapsid (N) and spike (S). Saliva and sera collected from confirmed coronavirus disease 2019 (COVID-19) cases and from the pre-COVID-19 era were tested for IgG, IgA, and IgM to the antigen panel. Matched saliva and serum IgG responses (n = 28) were significantly correlated. The salivary anti-N IgG response resulted in the highest sensitivity (100%), exhibiting a positive response in 24/24 reverse transcription-PCR (RT-PCR)-confirmed COVID-19 cases sampled at >14 days post-symptom onset (DPSO), whereas the salivary anti-receptor binding domain (RBD) IgG response yielded 100% specificity. Temporal kinetics of IgG in saliva were consistent with those observed in blood and indicated that most individuals seroconvert at around 10 DPSO. Algorithms employing a combination of the IgG responses to N and S antigens result in high diagnostic accuracy (100%) by as early as 10 DPSO. These results support the use of saliva-based antibody testing as a noninvasive and scalable alternative to blood-based antibody testing.
Assuntos
Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Saliva/imunologia , Teste de Ácido Nucleico para COVID-19/métodos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Glicoproteína da Espícula de Coronavírus/imunologiaRESUMO
BACKGROUND: Norovirus is a leading cause of acute gastroenteritis worldwide. Routine norovirus diagnosis requires stool collection. The goal of this study was to develop and validate a noninvasive method to diagnose norovirus to complement stool diagnostics and to facilitate studies on transmission. METHODS: A multiplex immunoassay to measure salivary immunoglobulin G (IgG) responses to 5 common norovirus genotypes (GI.1, GII.2, GII.4, GII.6, and GII.17) was developed. The assay was validated using acute and convalescent saliva samples collected from Peruvian children <5 years of age with polymerase chain reaction (PCR)-diagnosed norovirus infections (n = 175) and controls (n = 32). The assay sensitivity and specificity were calculated to determine infection status based on fold rise of salivary norovirus genotype-specific IgG using norovirus genotype from stool as reference. RESULTS: The salivary assay detected recent norovirus infections and correctly assigned the infecting genotype. Sensitivity was 71% and specificity was 96% across the evaluated genotypes compared to PCR-diagnosed norovirus infection. CONCLUSIONS: This saliva-based assay will be a useful tool to monitor norovirus transmission in high-risk settings such as daycare centers or hospitals. Cross-reactivity is limited between the tested genotypes, which represent the most commonly circulating genotypes.
Assuntos
Infecções por Caliciviridae/diagnóstico , Saliva/virologia , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Estudos de Casos e Controles , Pré-Escolar , Fezes/virologia , Humanos , Imunoglobulina G/imunologia , Norovirus/genética , Norovirus/imunologia , Peru/epidemiologia , Curva ROC , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saliva/imunologia , Sensibilidade e EspecificidadeRESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the importance and challenges of correctly interpreting antibody test results. Identification of positive and negative samples requires a classification strategy with low error rates, which is hard to achieve when the corresponding measurement values overlap. Additional uncertainty arises when classification schemes fail to account for complicated structure in data. We address these problems through a mathematical framework that combines high dimensional data modeling and optimal decision theory. Specifically, we show that appropriately increasing the dimension of data better separates positive and negative populations and reveals nuanced structure that can be described in terms of mathematical models. We combine these models with optimal decision theory to yield a classification scheme that better separates positive and negative samples relative to traditional methods such as confidence intervals (CIs) and receiver operating characteristics. We validate the usefulness of this approach in the context of a multiplex salivary SARS-CoV-2 immunoglobulin G assay dataset. This example illustrates how our analysis: (i) improves the assay accuracy, (e.g. lowers classification errors by up to 42% compared to CI methods); (ii) reduces the number of indeterminate samples when an inconclusive class is permissible, (e.g. by 40% compared to the original analysis of the example multiplex dataset) and (iii) decreases the number of antigens needed to classify samples. Our work showcases the power of mathematical modeling in diagnostic classification and highlights a method that can be adopted broadly in public health and clinical settings.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Saliva , Teste para COVID-19 , Técnicas e Procedimentos Diagnósticos , Anticorpos Antivirais , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. OBJECTIVES: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. METHODS: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December 2019 (n = 555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n = 398) and used to optimize and validate MIA performance (total n = 953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. RESULTS: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se] = 100.0%; 95% confidence interval [CI] = 94.8%, 100.0%) and 108/109 negatives (specificity [Sp] = 99.1%; 95% CI = 97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se = 98.8%; 95% CI = 93.3%, 100.0%] and 127/127 negatives (Sp = 100%; 95% CI = 97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n = 30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.83, S: ρ = 0.82; all p < 0.001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ = 0.68, RBD: ρ = 0.78, S: ρ = 0.79; all p < 0.001) and with plasma ELISA IgG (N: ρ = 0.76, RBD: ρ = 0.79, S: ρ = 0.76; p < 0.001) were similar. CONCLUSIONS: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (> 98.8%) and Sp (> 99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Anticorpos Neutralizantes , SARS-CoV-2 , COVID-19/diagnóstico , Anticorpos Antivirais , Imunoglobulina G , Teste para COVID-19RESUMO
The objective of the study was to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in the Howard County, Maryland, general population and demographic subpopulations attributable to natural infection or coronavirus disease 2019 (COVID-19) vaccination and to identify self-reported social behaviors that may affect the likelihood of recent or past SARS-CoV-2 infection. A cross-sectional, saliva-based serological study of 2,880 residents of Howard County, Maryland, was carried out from July through September 2021. Natural SARS-CoV-2 infection prevalence was estimated by inferring infections among individuals according to anti-nucleocapsid immunoglobin G levels and calculating averages weighted by sample proportions of various demographics. Antibody levels between BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) recipients were compared. Antibody decay rate was calculated by fitting exponential decay curves to cross-sectional indirect immunoassay data. Regression analysis was carried out to identify demographic factors, social behaviors, and attitudes that may be linked to an increased likelihood of natural infection. The estimated overall prevalence of natural infection in Howard County, Maryland, was 11.9% (95% confidence interval, 9.2% to 15.1%), compared with 7% reported COVID-19 cases. Antibody prevalence indicating natural infection was highest among Hispanic and non-Hispanic Black participants and lowest among non-Hispanic White and non-Hispanic Asian participants. Participants from census tracts with lower average household income also had higher natural infection rates. After accounting for multiple comparisons and correlations between participants, none of the behavior or attitude factors had significant effects on natural infection. At the same time, recipients of the mRNA-1273 vaccine had higher antibody levels than those of BNT162b2 vaccine recipients. Older study participants had overall lower antibody levels compared with younger study participants. The true prevalence of SARS-CoV-2 infection is higher than the number of reported COVID-19 cases in Howard County, Maryland. A disproportionate impact of infection-induced SARS-CoV-2 positivity was observed across different ethnic/racial subpopulations and incomes, and differences in antibody levels across different demographics were identified. Taken together, this information may inform public health policy to protect vulnerable populations. IMPORTANCE We employed a highly innovative noninvasive multiplex oral fluid SARS-CoV-2 IgG assay to ascertain our seroprevalence estimates. This laboratory-developed test has been applied in NCI's SeroNet consortium, possesses high sensitivity and specificity according to FDA Emergency Use Authorization guidelines, correlates strongly with SARS-CoV-2 neutralizing antibody responses, and is Clinical Laboratory Improvement Amendments-approved by the Johns Hopkins Hospital Department of Pathology. It represents a broadly scalable public health tool to improve understanding of recent and past SARS-CoV-2 exposure and infection without drawing any blood. To our knowledge, this is the first application of a high-performance salivary SARS-CoV-2 IgG assay to estimate population-level seroprevalence, including identifying COVID-19 disparities. We also are the first to report differences in SARS-CoV-2 IgG responses by COVID-19 vaccine manufacturers (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]). Our findings demonstrate remarkable consistency with those of blood-based SARS-CoV-2 IgG assays in terms of differences in the magnitude of SARS-CoV-2 IgG responses between COVID-19 vaccines.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Maryland/epidemiologia , Estudos Transversais , Prevalência , Saliva , Estudos Soroepidemiológicos , COVID-19/diagnóstico , COVID-19/epidemiologia , Anticorpos Antivirais , Imunoglobulina GRESUMO
In diagnostic testing, establishing an indeterminate class is an effective way to identify samples that cannot be accurately classified. However, such approaches also make testing less efficient and must be balanced against overall assay performance. We address this problem by reformulating data classification in terms of a constrained optimization problem that (i) minimizes the probability of labeling samples as indeterminate while (ii) ensuring that the remaining ones are classified with an average target accuracy X. We show that the solution to this problem is expressed in terms of a bathtub-type principle that holds out those samples with the lowest local accuracy up to an X-dependent threshold. To illustrate the usefulness of this analysis, we apply it to a multiplex, saliva-based SARS-CoV-2 antibody assay and demonstrate up to a 30 % reduction in the number of indeterminate samples relative to more traditional approaches.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Teoria da Decisão , Humanos , SalivaRESUMO
BACKGROUND: SARS-CoV-2 circulating variants coupled with waning immunity pose a significant threat to the long-term care (LTC) population. Our objective was to measure salivary IgG antibodies in residents and staff of an LTC facility to (1) evaluate IgG response in saliva post-natural infection and vaccination and (2) assess its feasibility to describe the seroprevalence over time. METHODS: We performed salivary IgG sampling of all residents and staff who agreed to test in a 150-bed skilled nursing facility during three seroprevalence surveys between October 2020 and February 2021. The facility had SARS-CoV-2 outbreaks in May 2020 and November 2020, when 45 of 138 and 37 of 125 residents were infected, respectively; they offered two Federal vaccine clinics in January 2021. We evaluated quantitative IgG in saliva to the Nucleocapsid (N), Spike (S), and Receptor-binding domain (RBD) Antigens of SARS-CoV-2 over time post-infection and post-vaccination. RESULTS: One hundred twenty-four residents and 28 staff underwent saliva serologic testing on one or more survey visits. Over three surveys, the SARS-CoV-2 seroprevalence at the facility was 49%, 64%, and 81%, respectively. IgG to S, RBD, and N Antigens all increased post infection. Post vaccination, the infection naïve group did not have a detectable N IgG level, and N IgG levels for the previously infected did not increase post vaccination (p < 0.001). Fully vaccinated subjects with prior COVID-19 infection had significantly higher RBD and S IgG responses compared with those who were infection-naïve prior to vaccination (p < 0.001 for both). CONCLUSIONS: Positive SARS-COV-2 IgG in saliva was concordant with prior infection (Anti N, S, RBD) and vaccination (Anti S, RBD) and remained above positivity threshold for up to 9 months from infection. Salivary sampling is a non-invasive method of tracking immunity and differentiating between prior infection and vaccination to inform the need for boosters in LTC residents and staff.
Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunoglobulina G/imunologia , Saliva/imunologia , Idoso , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Masculino , Casas de Saúde , SARS-CoV-2 , Estudos Soroepidemiológicos , Estados Unidos/epidemiologiaRESUMO
Background: Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance. Objectives: To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays. Methods: The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (µg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays. Results: The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 µg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p <0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p <0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p <0.0001) were similar. Conclusions: A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
RESUMO
BACKGROUND: Sustained molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the upper respiratory tract (URT) in mild to moderate coronavirus disease 2019 (COVID-19) is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five symptomatic outpatients self-collected midturbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR), in 507 URT samples occurred a median (interquartile range) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR-positive samples tested. All participants but 1 with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (adjusted hazard ratio [aHR], 0.96; 95% CI, 0.92-0.99; P = .020) and body mass index (BMI) ≥25 kg/m2 (aHR, 0.37; 95% CI, 0.18-0.78; P = .009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as 1 of first 3 COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR, 2.06; 95% CI, 1.02-4.18; P = .044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.
RESUMO
BACKGROUND: Sustained molecular detection of SARS-CoV-2 RNA in the upper respiratory tract (URT) in mild to moderate COVID-19 is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five outpatients self-collected mid-turbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 RT-PCR, in 507 URT samples occurred a median (IQR) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR positive samples tested. All participants but one with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (aHR 0.96, 95% CI 0.92-0.99, p=0.020) and BMI ≥ 25kg/m 2 (aHR 0.37, 95% CI 0.18-0.78, p=0.009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as one of first three COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR 2.06, 95% CI 1.02-4.18, p=0.044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.
RESUMO
BACKGROUND: Hepatitis E virus (HEV) infection causes significant morbidity and mortality worldwide, particularly among pregnant women. In clinical settings blood-based testing protocols are commonly used to diagnose HEV infection, but in community settings such invasive sampling can hinder study participation and limit discovery of the ecology and natural history of HEV infection. Oral fluid is a non-invasive biospecimen that can harbor pathogen-specific antibodies and has the potential to replace blood-based testing protocols. OBJECTIVES: To develop an immunoassay to assess past and recent HEV infection that uses oral fluid instead of serum or plasma. METHODS: The assay was validated using paired oral fluid and serum samples collected from 141 patients who presented either with (n=76) or without (n=65) symptoms of acute viral hepatitis at a clinical diagnostics center in Dhaka, Bangladesh. The sensitivity and specificity of the oral fluid-based immunoassay for HEV IgG (past HEV infection) and HEV IgA (recent HEV infection) antibodies was calculated in reference to Wantai's (Beijing Wantai) serum-based HEV enzyme-linked immunosorbent assay (ELISA) kits for IgG and IgM antibodies, respectively. RESULTS: The sensitivity and specificity of the oral fluid-based immunoassay for HEV-IgG antibodies were 98.7% and 98.4%, respectively. The sensitivity and specificity of the oral fluid-based immunoassay for HEV IgA were 89.5% and 98.3%, respectively. CONCLUSIONS: The high concordance of our non-invasive oral fluid-based immunoassays (HEV IgG and HEV IgA) with commercial high-performance serum HEV ELISA kits (IgG and IgM) means that population-based surveillance of past and recent HEV infection could be expanded to improve understanding of its ecology and natural history.